69 research outputs found
Untangling the effects of overexploration and overexploitation on organizational performance: The moderating role of environmental dynamism
Because a firm's optimal knowledge search behavior is determined by unique firm and industry conditions, organizational performance should be contingent oil the degree to which a firm's actual level of knowledge search deviates from the optimal level. It is thus hypothesized that deviation from the optimal search, in the form of either overexploitation or overexploration, is detrimental to organizational performance. Furthermore, the negative effect of search deviation oil organizational performance varies with environmental dynamism: that is, overexploitation is expected to become more harmful. whereas overexploration becomes less so with all increase in environmental dynamism. The empirical analyses yield results consistent with these arguments. Implications for research and practice are correspondingly discussed
Nuclear singlet relaxation by scalar relaxation of the second kind in the slow-fluctuation regime
The singlet state of nuclear spin-1/2 pairs is protected against many common relaxation mechanisms. Singlet order, which is defined as the population difference between the nuclear singlet and triplet states, usually decays more slowly than the nuclear magnetization. Nevertheless, some decay mechanisms for nuclear singlet order persist. One such mechanism is called scalar relaxation of the second kind (SR2K) and involves the relaxation of additional nuclei ("third spins") which have scalar couplings to the spin-1/2 pair. This mechanism requires a difference between the couplings of at least one third spin with the two members of the spin-1/2 pair, and depends on the longitudinal relaxation time of the third spin. The SR2K mechanism of nuclear singlet relaxation has previously been examined in the case where the relaxation rate of the additional spins is on the time scale of the nuclear Larmor frequency. In this paper, we consider a different regime, in which the longitudinal relaxation of the third spins is on a similar time scale to the J-coupling between the members of the spin pair. This regime is often encountered when the spin-1/2 pair has scalar couplings to nearby deuterium nuclei. We show that the SR2K mechanism may be suppressed in this regime by applying a radiofrequency field which is resonant either with the members of the spin pair, or with the third spins. These phenomena are analyzed theoretically and by numerical simulations, and demonstrated experimentally on a diester of [13C2,2H2]-labeled fumarate in solution. </p
- …