148 research outputs found
Enhanced THz transmission apertures through sub-wavelength annular apertures
We report on the development of a surface micromachined process for the fabrication of coaxial apertures surrounded by periodic grooves. The process uses a combination of copper electroforming and the negative epoxy based resist, SU8, as a thin flexible substrate. The device dimensions are suitable for the implementation of filters at THz frequencies, and measurements show a pass band centred around 1.5 THz. These devices could form the basis of the next generation of THz biosensors
On Quantum Control via Encoded Dynamical Decoupling
I revisit the ideas underlying dynamical decoupling methods within the
framework of quantum information processing, and examine their potential for
direct implementations in terms of encoded rather than physical degrees of
freedom. The usefulness of encoded decoupling schemes as a tool for engineering
both closed- and open-system encoded evolutions is investigated based on simple
examples.Comment: 12 pages, no figures; REVTeX style. This note collects various
theoretical considerations complementing/motivated by the experimental
demonstration of encoded control by Fortunato et a
Encoded Recoupling and Decoupling: An Alternative to Quantum Error Correcting Codes, Applied to Trapped Ion Quantum Computation
A recently developed theory for eliminating decoherence and design
constraints in quantum computers, ``encoded recoupling and decoupling'', is
shown to be fully compatible with a promising proposal for an architecture
enabling scalable ion-trap quantum computation [D. Kielpinski et al., Nature
417, 709 (2002)]. Logical qubits are encoded into pairs of ions. Logic gates
are implemented using the Sorensen-Molmer (SM) scheme applied to pairs of ions
at a time. The encoding offers continuous protection against collective
dephasing. Decoupling pulses, that are also implemented using the SM scheme
directly to the encoded qubits, are capable of further reducing various other
sources of qubit decoherence, such as due to differential dephasing and due to
decohered vibrational modes. The feasibility of using the relatively slow SM
pulses in a decoupling scheme quenching the latter source of decoherence
follows from the observed 1/f spectrum of the vibrational bath.Comment: 12 pages, no figure
Knowledge-based energy functions for computational studies of proteins
This chapter discusses theoretical framework and methods for developing
knowledge-based potential functions essential for protein structure prediction,
protein-protein interaction, and protein sequence design. We discuss in some
details about the Miyazawa-Jernigan contact statistical potential,
distance-dependent statistical potentials, as well as geometric statistical
potentials. We also describe a geometric model for developing both linear and
non-linear potential functions by optimization. Applications of knowledge-based
potential functions in protein-decoy discrimination, in protein-protein
interactions, and in protein design are then described. Several issues of
knowledge-based potential functions are finally discussed.Comment: 57 pages, 6 figures. To be published in a book by Springe
The rise of inconspicuous consumption
Ever since Veblen and Simmel, luxury has been synonymous with conspicuous consumption. In this conceptual paper we demonstrate the rise of inconspicuous consumption via a wide-ranging synthesis of the literature. We attribute this rise to the signalling ability of traditional luxury goods being diluted, a preference for not standing out as ostentatious during times of economic hardship, and an increased desire for sophistication and subtlety in design in order to further distinguish oneself for a narrow group of peers. We decouple the constructs of luxury and conspicuousness, which allows us to reconceptualise the signalling quality of brands and the construct of luxury. This also has implications for understanding consumer behaviour practices such as counterfeiting and suggests that consumption trends in emerging markets may take a different path from the past
Chromosomal localization of 15 ion channel genes
Several human Mendelian diseases, including the long-QT syndrome, malignant hyperthermia, and episodic ataxia/myokymia syndrome, have recently been demonstrated to be due to mutations in ion channel genes. Systematic mapping of ion channel genes may therefore reveal candidates for other heritable disorders. In this study, the GenBank and dbEST databases were used to identify members of several ion channel families (voltage-gated calcium and sodium cardiac chloride, and all classes of potassium channels). Genes and ESTs without prior map localization were identified based on GDB and OWL database information and 15 genes and ESTs were selected for mapping. Of these 15, only the serotonin receptor 5HT3R had been previously mapped to a chromosome. A somatic cell hybrid panel (SCH) was screened with an STS from each gene and, if necessary, the results verified by a second SCH panel. For three ESTs, rodent derived PCR products of the same size as the human STS precluded SCH mapping. For these three, human Pl clones were isolated and the genomic location was determined by metaphase FISH. These genes and ESTs can now be further evaluated as candidate genes for inherited cardiac, neuromuscular, and psychiatric disorders mapped to these chromosomes. Furthermore, the ESTs developed in this study can be used to isolate genomic clones, enabling the determination of each transcript's genomic structure and physical map location. This approach may also be applicable to other gene families and may aid in the identification of candidate genes for groups of related heritable disorders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45548/1/11188_2006_Article_BF02369898.pd
Automated Structure Solution with the PHENIX Suite
Significant time and effort are often required to solve and complete a macromolecular crystal structure. The development of automated computational methods for the analysis, solution and completion of crystallographic structures has the potential to produce minimally biased models in a short time without the need for manual intervention. The PHENIX software suite is a highly automated system for macromolecular structure determination that can rapidly arrive at an initial partial model of a structure without significant human intervention, given moderate resolution and good quality data. This achievement has been made possible by the development of new algorithms for structure determination, maximum-likelihood molecular replacement (PHASER), heavy-atom search (HySS), template and pattern-based automated model-building (RESOLVE, TEXTAL), automated macromolecular refinement (phenix.refine), and iterative model-building, density modification and refinement that can operate at moderate resolution (RESOLVE, AutoBuild). These algorithms are based on a highly integrated and comprehensive set of crystallographic libraries that have been built and made available to the community. The algorithms are tightly linked and made easily accessible to users through the PHENIX Wizards and the PHENIX GUI
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p
- …