712 research outputs found

    Spin-Orbit Coupling in LaAlO3_3/SrTiO3_3 interfaces: Magnetism and Orbital Ordering

    Full text link
    The combination of Rashba spin-orbit coupling and electron correlations can induce unusual phenomena in the metallic interface between SrTiO3_3 and LaAlO3_3. We consider effects of Rashba spin-orbit coupling at this interface in the context of the recent observation of anisotropic magnetism. Firstly, we show how Rashba spin-orbit coupling in a system near a band-edge can account for the observed magnetic anisotropy. Secondly, we investigate the coupling between in-plane magnetic-moment anisotropy and nematicity in the form of an orbital imbalance between dxz_{xz} / dyz_{yz} orbitals. We estimate this coupling to be substantial in the low electron density regime. Such an orbital ordering can affect magneto transport

    Practical quantum key distribution: On the security evaluation with inefficient single-photon detectors

    Full text link
    Quantum Key Distribution with the BB84 protocol has been shown to be unconditionally secure even using weak coherent pulses instead of single-photon signals. The distances that can be covered by these methods are limited due to the loss in the quantum channel (e.g. loss in the optical fiber) and in the single-photon counters of the receivers. One can argue that the loss in the detectors cannot be changed by an eavesdropper in order to increase the covered distance. Here we show that the security analysis of this scenario is not as easy as is commonly assumed, since already two-photon processes allow eavesdropping strategies that outperform the known photon-number splitting attack. For this reason there is, so far, no satisfactory security analysis available in the framework of individual attacks.Comment: 11 pages, 6 figures; Abstract and introduction extended, Appendix added, references update

    No-Switching Quantum Key Distribution using Broadband Modulated Coherent Light

    Full text link
    We realize an end-to-end no-switching quantum key distribution protocol using continuous-wave coherent light. We encode weak broadband Gaussian modulations onto the amplitude and phase quadratures of light beams at the Shannon's information limit. Our no-switching protocol achieves high secret key rate via a post-selection protocol that utilizes both quadrature information simultaneously. We establish a secret key rate of 25 Mbits/s for a lossless channel and 1 kbit/s, per 17 MHz of detected bandwidth, for 90% channel loss. Since our scheme is truly broadband, it can potentially deliver orders of magnitude higher key rates by extending the encoding bandwidth with higher-end telecommunication technology.Comment: 5 pages, 3 figures, publishe

    On Approximation of the Eigenvalues of Perturbed Periodic Schrodinger Operators

    Full text link
    This paper addresses the problem of computing the eigenvalues lying in the gaps of the essential spectrum of a periodic Schrodinger operator perturbed by a fast decreasing potential. We use a recently developed technique, the so called quadratic projection method, in order to achieve convergence free from spectral pollution. We describe the theoretical foundations of the method in detail, and illustrate its effectiveness by several examples.Comment: 17 pages, 2 tables and 2 figure

    On 1-qubit channels

    Get PDF
    The entropy H_T(rho) of a state rho with respect to a channel T and the Holevo capacity of the channel require the solution of difficult variational problems. For a class of 1-qubit channels, which contains all the extremal ones, the problem can be significantly simplified by associating an Hermitian antilinear operator theta to every channel of the considered class. The concurrence of the channel can be expressed by theta and turns out to be a flat roof. This allows to write down an explicit expression for H_T. Its maximum would give the Holevo (1-shot) capacity.Comment: 12 pages, several printing or latex errors correcte

    Spectral asymmetry of the massless Dirac operator on a 3-torus

    Get PDF
    Consider the massless Dirac operator on a 3-torus equipped with Euclidean metric and standard spin structure. It is known that the eigenvalues can be calculated explicitly: the spectrum is symmetric about zero and zero itself is a double eigenvalue. The aim of the paper is to develop a perturbation theory for the eigenvalue with smallest modulus with respect to perturbations of the metric. Here the application of perturbation techniques is hindered by the fact that eigenvalues of the massless Dirac operator have even multiplicity, which is a consequence of this operator commuting with the antilinear operator of charge conjugation (a peculiar feature of dimension 3). We derive an asymptotic formula for the eigenvalue with smallest modulus for arbitrary perturbations of the metric and present two particular families of Riemannian metrics for which the eigenvalue with smallest modulus can be evaluated explicitly. We also establish a relation between our asymptotic formula and the eta invariant
    • …
    corecore