846 research outputs found

    Effects of Noise in a Cortical Neural Model

    Full text link
    Recently Segev et al. (Phys. Rev. E 64,2001, Phys.Rev.Let. 88, 2002) made long-term observations of spontaneous activity of in-vitro cortical networks, which differ from predictions of current models in many features. In this paper we generalize the EI cortical model introduced in a previous paper (S.Scarpetta et al. Neural Comput. 14, 2002), including intrinsic white noise and analyzing effects of noise on the spontaneous activity of the nonlinear system, in order to account for the experimental results of Segev et al.. Analytically we can distinguish different regimes of activity, depending from the model parameters. Using analytical results as a guide line, we perform simulations of the nonlinear stochastic model in two different regimes, B and C. The Power Spectrum Density (PSD) of the activity and the Inter-Event-Interval (IEI) distributions are computed, and compared with experimental results. In regime B the network shows stochastic resonance phenomena and noise induces aperiodic collective synchronous oscillations that mimic experimental observations at 0.5 mM Ca concentration. In regime C the model shows spontaneous synchronous periodic activity that mimic activity observed at 1 mM Ca concentration and the PSD shows two peaks at the 1st and 2nd harmonics in agreement with experiments at 1 mM Ca. Moreover (due to intrinsic noise and nonlinear activation function effects) the PSD shows a broad band peak at low frequency. This feature, observed experimentally, does not find explanation in the previous models. Besides we identify parametric changes (namely increase of noise or decreasing of excitatory connections) that reproduces the fading of periodicity found experimentally at long times, and we identify a way to discriminate between those two possible effects measuring experimentally the low frequency PSD.Comment: 25 pages, 10 figures, to appear in Phys. Rev.

    The inverse scattering problem at fixed energy based on the Marchenko equation for an auxiliary Sturm-Liouville operator

    Full text link
    A new approach is proposed to the solution of the quantum mechanical inverse scattering problem at fixed energy. The method relates the fixed energy phase shifts to those arising in an auxiliary Sturm-Liouville problem via the interpolation theory of the Weyl-Titchmarsh m-function. Then a Marchenko equation is solved to obtain the potential.Comment: 6 pages, 8 eps figure

    Exact propagators for SUSY partners

    Full text link
    Pairs of SUSY partner Hamiltonians are studied which are interrelated by usual (linear) or polynomial supersymmetry. Assuming the model of one of the Hamiltonians as exactly solvable with known propagator, expressions for propagators of partner models are derived. The corresponding general results are applied to "a particle in a box", the Harmonic oscillator and a free particle (i.e. to transparent potentials).Comment: 31 page

    Small-Energy Analysis for the Selfadjoint Matrix Schroedinger Operator on the Half Line

    Full text link
    The matrix Schroedinger equation with a selfadjoint matrix potential is considered on the half line with the most general selfadjoint boundary condition at the origin. When the matrix potential is integrable and has a first moment, it is shown that the corresponding scattering matrix is continuous at zero energy. An explicit formula is provided for the scattering matrix at zero energy. The small-energy asymptotics are established also for the corresponding Jost matrix, its inverse, and various other quantities relevant to the corresponding direct and inverse scattering problems.Comment: This published version has been edited to improve the presentation of the result

    SUSY transformations with complex factorization constants. Application to spectral singularities

    Full text link
    Supersymmetric (SUSY) transformation operators corresponding to complex factorization constants are analyzed as operators acting in the Hilbert space of functions square integrable on the positive semiaxis. Obtained results are applied to Hamiltonians possessing spectral singularities which are non-Hermitian SUSY partners of selfadjoint operators. A new regularization procedure for the resolution of the identity operator in terms of continuous biorthonormal set of the non-Hermitian Hamiltonian eigenfunctions is proposed. It is also shown that the continuous spectrum eigenfunction has zero binorm (in the sense of distributions) at the singular point.Comment: Thanks to A. Sokolov a number of inaccuracies are correcte

    INTRINSIC MECHANISM FOR ENTROPY CHANGE IN CLASSICAL AND QUANTUM EVOLUTION

    Get PDF
    It is shown that the existence of a time operator in the Liouville space representation of both classical and quantum evolution provides a mechanism for effective entropy change of physical states. In particular, an initially effectively pure state can evolve under the usual unitary evolution to an effectively mixed state.Comment: 20 pages. For more information or comments contact E. Eisenberg at [email protected] (internet)

    Stability of the inverse resonance problem on the line

    Full text link
    In the absence of a half-bound state, a compactly supported potential of a Schr\"odinger operator on the line is determined up to a translation by the zeros and poles of the meropmorphically continued left (or right) reflection coefficient. The poles are the eigenvalues and resonances, while the zeros also are physically relevant. We prove that all compactly supported potentials (without half-bound states) that have reflection coefficients whose zeros and poles are \eps-close in some disk centered at the origin are also close (in a suitable sense). In addition, we prove stability of small perturbations of the zero potential (which has a half-bound state) from only the eigenvalues and resonances of the perturbation.Comment: 21 page

    Inverse Spectral-Scattering Problem with Two Sets of Discrete Spectra for the Radial Schroedinger Equation

    Full text link
    The Schroedinger equation on the half line is considered with a real-valued, integrable potential having a finite first moment. It is shown that the potential and the boundary conditions are uniquely determined by the data containing the discrete eigenvalues for a boundary condition at the origin, the continuous part of the spectral measure for that boundary condition, and a subset of the discrete eigenvalues for a different boundary condition. This result extends the celebrated two-spectrum uniqueness theorem of Borg and Marchenko to the case where there is also a continuous spectru
    corecore