846 research outputs found
Effects of Noise in a Cortical Neural Model
Recently Segev et al. (Phys. Rev. E 64,2001, Phys.Rev.Let. 88, 2002) made
long-term observations of spontaneous activity of in-vitro cortical networks,
which differ from predictions of current models in many features. In this paper
we generalize the EI cortical model introduced in a previous paper (S.Scarpetta
et al. Neural Comput. 14, 2002), including intrinsic white noise and analyzing
effects of noise on the spontaneous activity of the nonlinear system, in order
to account for the experimental results of Segev et al.. Analytically we can
distinguish different regimes of activity, depending from the model parameters.
Using analytical results as a guide line, we perform simulations of the
nonlinear stochastic model in two different regimes, B and C. The Power
Spectrum Density (PSD) of the activity and the Inter-Event-Interval (IEI)
distributions are computed, and compared with experimental results. In regime B
the network shows stochastic resonance phenomena and noise induces aperiodic
collective synchronous oscillations that mimic experimental observations at 0.5
mM Ca concentration. In regime C the model shows spontaneous synchronous
periodic activity that mimic activity observed at 1 mM Ca concentration and the
PSD shows two peaks at the 1st and 2nd harmonics in agreement with experiments
at 1 mM Ca. Moreover (due to intrinsic noise and nonlinear activation function
effects) the PSD shows a broad band peak at low frequency. This feature,
observed experimentally, does not find explanation in the previous models.
Besides we identify parametric changes (namely increase of noise or decreasing
of excitatory connections) that reproduces the fading of periodicity found
experimentally at long times, and we identify a way to discriminate between
those two possible effects measuring experimentally the low frequency PSD.Comment: 25 pages, 10 figures, to appear in Phys. Rev.
The inverse scattering problem at fixed energy based on the Marchenko equation for an auxiliary Sturm-Liouville operator
A new approach is proposed to the solution of the quantum mechanical inverse
scattering problem at fixed energy. The method relates the fixed energy phase
shifts to those arising in an auxiliary Sturm-Liouville problem via the
interpolation theory of the Weyl-Titchmarsh m-function. Then a Marchenko
equation is solved to obtain the potential.Comment: 6 pages, 8 eps figure
Exact propagators for SUSY partners
Pairs of SUSY partner Hamiltonians are studied which are interrelated by
usual (linear) or polynomial supersymmetry. Assuming the model of one of the
Hamiltonians as exactly solvable with known propagator, expressions for
propagators of partner models are derived. The corresponding general results
are applied to "a particle in a box", the Harmonic oscillator and a free
particle (i.e. to transparent potentials).Comment: 31 page
Small-Energy Analysis for the Selfadjoint Matrix Schroedinger Operator on the Half Line
The matrix Schroedinger equation with a selfadjoint matrix potential is
considered on the half line with the most general selfadjoint boundary
condition at the origin. When the matrix potential is integrable and has a
first moment, it is shown that the corresponding scattering matrix is
continuous at zero energy. An explicit formula is provided for the scattering
matrix at zero energy. The small-energy asymptotics are established also for
the corresponding Jost matrix, its inverse, and various other quantities
relevant to the corresponding direct and inverse scattering problems.Comment: This published version has been edited to improve the presentation of
the result
SUSY transformations with complex factorization constants. Application to spectral singularities
Supersymmetric (SUSY) transformation operators corresponding to complex
factorization constants are analyzed as operators acting in the Hilbert space
of functions square integrable on the positive semiaxis. Obtained results are
applied to Hamiltonians possessing spectral singularities which are
non-Hermitian SUSY partners of selfadjoint operators. A new regularization
procedure for the resolution of the identity operator in terms of continuous
biorthonormal set of the non-Hermitian Hamiltonian eigenfunctions is proposed.
It is also shown that the continuous spectrum eigenfunction has zero binorm (in
the sense of distributions) at the singular point.Comment: Thanks to A. Sokolov a number of inaccuracies are correcte
Recommended from our members
GAP WORK project report: training for youth practitioners on tackling gender-related violence
This project sought to challenge gender-related violence against (and by) children and young people by developing training for practitioners who have everyday contact with general populations of children and young people (‘youth practitioners’). Through improved knowledge and understanding practitioners can better identify and challenge sexist, sexualising, homophobic or controlling language and behaviour, and know when and how to refer children and young people to the most appropriate support services. This summary outlines the Project and our initial findings about the success of the four training programmes developed and piloted.Co-funded by the DAPHNE III programme of the EU
INTRINSIC MECHANISM FOR ENTROPY CHANGE IN CLASSICAL AND QUANTUM EVOLUTION
It is shown that the existence of a time operator in the Liouville space
representation of both classical and quantum evolution provides a mechanism for
effective entropy change of physical states. In particular, an initially
effectively pure state can evolve under the usual unitary evolution to an
effectively mixed state.Comment: 20 pages. For more information or comments contact E. Eisenberg at
[email protected] (internet)
Stability of the inverse resonance problem on the line
In the absence of a half-bound state, a compactly supported potential of a
Schr\"odinger operator on the line is determined up to a translation by the
zeros and poles of the meropmorphically continued left (or right) reflection
coefficient. The poles are the eigenvalues and resonances, while the zeros also
are physically relevant. We prove that all compactly supported potentials
(without half-bound states) that have reflection coefficients whose zeros and
poles are \eps-close in some disk centered at the origin are also close (in a
suitable sense). In addition, we prove stability of small perturbations of the
zero potential (which has a half-bound state) from only the eigenvalues and
resonances of the perturbation.Comment: 21 page
Inverse Spectral-Scattering Problem with Two Sets of Discrete Spectra for the Radial Schroedinger Equation
The Schroedinger equation on the half line is considered with a real-valued,
integrable potential having a finite first moment. It is shown that the
potential and the boundary conditions are uniquely determined by the data
containing the discrete eigenvalues for a boundary condition at the origin, the
continuous part of the spectral measure for that boundary condition, and a
subset of the discrete eigenvalues for a different boundary condition. This
result extends the celebrated two-spectrum uniqueness theorem of Borg and
Marchenko to the case where there is also a continuous spectru
- …