332 research outputs found
Gene Therapy for the Treatment of Equine Osteoarthritis
Osteoarthritis (OA) is the predominant cause of lameness in horses. As in humans, the clinical symptoms of equine OA are persistent pain and dysfunction of the affected joint. Its pathology is similarly marked by progressive deterioration of the articular cartilage, subchondral bone sclerosis, marginal osteophytes, soft tissue inflammation and joint effusion. Disease pathogenesis is mediated by elevated levels of inflammatory cytokines and proteolytic enzymes in the articular tissues and synovial fluid. Existing pharmacologic agents can alleviate OA joint pain; none are able to inhibit erosive disease progression. As several gene-based treatments for human disease have received approval by the Food and Drug Administration (FDA), the transition to veterinary medicine will almost certainly follow. Several viral vector systems have demonstrated highly efficient gene transfer to the equine joint, enabling expression of therapeutic transgenes at efficacious levels for well over a year. Because of its large size, the equine joint is well suited to studies of gene-based therapies for arthritic disease. The forelimb joints are vulnerable to OA onset, and treatment and diagnostic modalities are the same in humans and horses. Here, we discuss the various gene-transfer approaches under investigation and the current progress toward the development an effective gene therapy for equine OA
Exogenous glucosamine globally protects chondrocytes from the arthritogenic effects of IL-1β
The effects of exogenous glucosamine on the biology of articular chondrocytes were determined by examining global transcription patterns under normal culture conditions and following challenge with IL-1β. Chondrocytes isolated from the cartilage of rats were cultured in several flasks either alone or in the presence of 20 mM glucosamine. Six hours later, one-half of the cultures of each group were challenged with 10 ng/ml IL-1β. Fourteen hours after this challenge, RNA was extracted from each culture individually and used to probe microarray chips corresponding to the entire rat genome. Glucosamine alone had no observable stimulatory effect on the transcription of primary cartilage matrix genes, such as aggrecan, collagen type II, or genes involved in glycosaminoglycan synthesis; however, glucosamine proved to be a potent, broad-spectrum inhibitor of IL-1β. Of the 2,813 genes whose transcription was altered by IL-1β stimulation (P < 0.0001), glucosamine significantly blocked the response in 2,055 (~73%). Glucosamine fully protected the chondrocytes from IL-1-induced expression of inflammatory cytokines, chemokines, and growth factors as well as proteins involved in prostaglandin E(2 )and nitric oxide synthesis. It also blocked the IL-1-induced expression of matrix-specific proteases such as MMP-3, MMP-9, MMP-10, MMP-12, and ADAMTS-1. The concentrations of IL-1 and glucosamine used in these assays were supraphysiological and were not representative of the arthritic joint following oral consumption of glucosamine. They suggest, however, that the potential benefit of glucosamine in osteoarthritis is not related to cartilage matrix biosynthesis, but is more probably related to its ability to globally inhibit the deleterious effects of IL-1β signaling. These results suggest that glucosamine, if administered effectively, may indeed have anti-arthritic properties, but primarily as an anti-inflammatory agent
A composite immune signature parallels disease progression across T1D subjects
At diagnosis, most people with type 1 diabetes (T1D) produce measurable levels of endogenous insulin, but the rate at which insulin secretion declines is heterogeneous. To explain this heterogeneity, we sought to identify a composite signature predictive of insulin secretion, using a collaborative assay evaluation and analysis pipeline that incorporated multiple cellular and serum measures reflecting beta cell health and immune system activity. The ability to predict decline in insulin secretion would be useful for patient stratification for clinical trial enrollment or therapeutic selection. Analytes from 12 qualified assays were measured in shared samples from subjects newly diagnosed with T1D. We developed a computational tool to identify a composite panel associated with decline in insulin secretion over 2 years after diagnosis. The tool employs multiple filtering steps to reduce data dimensionality, incorporates error-estimation techniques including cross-validation and sensitivity analysis, and is flexible to assay type, clinical outcome and disease setting. Using this novel analytical tool, we identified a panel of immune markers that, in combination, are highly associated with loss of insulin secretion. The methods used here represent a novel process for identifying combined immune signatures that predict outcomes relevant for complex and heterogeneous diseases like T1D
Circulating gluten-specific FOXP3 + CD39 + regulatory T cells have impaired suppressive function in patients with celiac disease
Background
Celiac disease is a chronic immune-mediated inflammatory disorder of the gut triggered by dietary gluten. Although the effector T-cell response in patients with celiac disease has been well characterized, the role of regulatory T (Treg) cells in the loss of tolerance to gluten remains poorly understood.
Objective
We sought to define whether patients with celiac disease have a dysfunction or lack of gluten-specific forkhead box protein 3 (FOXP3)+ Treg cells.
Methods
Treated patients with celiac disease underwent oral wheat challenge to stimulate recirculation of gluten-specific T cells. Peripheral blood was collected before and after challenge. To comprehensively measure the gluten-specific CD4+ T-cell response, we paired traditional IFN-γ ELISpot with an assay to detect antigen-specific CD4+ T cells that does not rely on tetramers, antigen-stimulated cytokine production, or proliferation but rather on antigen-induced coexpression of CD25 and OX40 (CD134).
Results
Numbers of circulating gluten-specific Treg cells and effector T cells both increased significantly after oral wheat challenge, peaking at day 6. Surprisingly, we found that approximately 80% of the ex vivo circulating gluten-specific CD4+ T cells were FOXP3+CD39+ Treg cells, which reside within the pool of memory CD4+CD25+CD127lowCD45RO+ Treg cells. Although we observed normal suppressive function in peripheral polyclonal Treg cells from patients with celiac disease, after a short in vitro expansion, the gluten-specific FOXP3+CD39+ Treg cells exhibited significantly reduced suppressive function compared with polyclonal Treg cells.
Conclusion
This study provides the first estimation of FOXP3+CD39+ Treg cell frequency within circulating gluten-specific CD4+ T cells after oral gluten challenge of patients with celiac disease. FOXP3+CD39+ Treg cells comprised a major proportion of all circulating gluten-specific CD4+ T cells but had impaired suppressive function, indicating that Treg cell dysfunction might be a key contributor to disease pathogenesis
Change in Sediment Features and the Macroinvertebrate Community Within an Estuarine Ecosystem Two Years Post‐restoration
Our objective was to assess the response of an estuarine ecosystem to restoration efforts, two years post‐restoration. Sediment attributes of particle size distribution (PSD), %LOI, water content and amounts of fine wood debris (FWD), and the macroinvertebrate community were compared among three sites, two reference and the recently restored site. The restored region had been previously used as a log sorting facility. As indicated by PSD, the restored site showed signs of recovery. However, the macroinvertebrate community had still not responded to restoration efforts. Sediments of reference sites were comprised of fine sand, and the macroinvertebrate community was dominated by Macoma spp. By contrast, at the restored site, sediments were mainly comprised of silt followed by fine sand, Macoma spp. was absent, and the main macroinvertebrate was Glycera americana, a polychaeta characteristic of disturbed regions. The restored site still contained significance amounts of FWD as compared to the two reference sites attributed to its previous use. Although still early in its recovery stage, active restoration did have a positive effect and will have likely kick started the region toward recovery and further follow‐up in five years is recommended
Neutralization of (NK-cell-derived) B-cell activating factor by Belimumab restores sensitivity of chronic lymphoid leukemia cells to direct and Rituximab-induced NK lysis.
Natural killer (NK) cells are cytotoxic lymphocytes that substantially contribute to the therapeutic benefit of antitumor antibodies like Rituximab, a crucial component in the treatment of B-cell malignancies. In chronic lymphocytic leukemia (CLL), the ability of NK cells to lyse the malignant cells and to mediate antibody-dependent cellular cytotoxicity upon Fc receptor stimulation is compromised, but the underlying mechanisms are largely unclear. We report here that NK-cells activation-dependently produce the tumor necrosis factor family member 'B-cell activating factor' (BAFF) in soluble form with no detectable surface expression, also in response to Fc receptor triggering by therapeutic CD20-antibodies. BAFF in turn enhanced the metabolic activity of primary CLL cells and impaired direct and Rituximab-induced lysis of CLL cells without affecting NK reactivity per se. The neutralizing BAFF antibody Belimumab, which is approved for treatment of systemic lupus erythematosus, prevented the effects of BAFF on the metabolism of CLL cells and restored their susceptibility to direct and Rituximab-induced NK-cell killing in allogeneic and autologous experimental systems. Our findings unravel the involvement of BAFF in the resistance of CLL cells to NK-cell antitumor immunity and Rituximab treatment and point to a benefit of combinatory approaches employing BAFF-neutralizing drugs in B-cell malignancies
Identification, frequency, activation and function of CD4+ CD25highFoxP3+ regulatory T cells in children with juvenile idiopathic arthritis
The aim of the study was to test the frequency of CD4+ CD25highFoxP3 regulatory T cells in JIA patients and to assess their activation status and functional activity. The study involved 12 children with JIA and 35 healthy control subjects. PBMC were stained with monoclonal antibodies (anti-CD25, anti-CD4, anti-CD127, anti-CD69, anti-CD71, and anti-FoxP3). The samples were evaluated using flow cytometer. CD4+ CD25− and CD4+ CD25+ cells were isolated by negative and positive selection with magnetic microbeads. CD4+ CD25+ and CD4+ CD25− cells were cultured separately and co-cultured (1:1) with or without PHA. The percentage of Tregs in JIA patients was significantly decreased in comparison with controls (median, 3.2 vs. 4.6; P = 0.042). Relative fluorescence intensities of FoxP3 were higher in JIA patients than in controls (median, 9.1 vs. 6.8). The percentage of activated Tregs (CD71+) was significantly higher in JIA patients in comparison with controls (median, 6.5 vs. 2.8; P = 0.00043). CD4+ CD25+ cells derived from JIA patients and controls were anergic upon PHA stimulation, while CD4+ CD25− cells showed intensive proliferative response. The proliferation rate of CD4+ CD25− cells stimulated by PHA was decreased in co-cultures. In JIA patients, the inhibition of proliferation of CD4+ CD25− cells by CD4+ CD25+ cells was 37.9%, whereas in controls it was significantly lower (55.7%, P = 0.046). JIA patients had statistically lower percentage of Tregs in peripheral blood compared to controls. CD4+ CD25+ cells sorted from peripheral blood of JIA patients had statistically lower ability to suppress CD4+ CD25− cell proliferation in comparison with cells obtained from controls
Interferon-α Abrogates Tolerance Induction by Human Tolerogenic Dendritic Cells
BACKGROUND: Administration of interferon-α (IFN-α) represents an approved adjuvant therapy as reported for malignancies like melanoma and several viral infections. In malignant diseases, tolerance processes are critically involved in tumor progression. In this study, the effect of IFN-α on tolerance induction by human tolerogenic dendritic cells (DC) was analyzed. We focussed on tolerogenic IL-10-modulated DC (IL-10 DC) that are known to induce anergic regulatory T cells (iTregs). METHODOLOGY/PRINCIPAL FINDINGS: IFN-α promoted an enhanced maturation of IL-10 DC as demonstrated by upregulation of the differentiation marker CD83 as well as costimulatory molecules. IFN-α treatment resulted in an increased capacity of DC to stimulate T cell activation compared to control tolerogenic DC. We observed a strengthened T cell proliferation and increased IFN-γ production of CD4(+) and CD8(+) T cells stimulated by IFN-α-DC, demonstrating a restoration of the immunogenic capacity of tolerogenic DC in the presence of IFN-α. Notably, restimulation experiments revealed that IFN-α treatment of tolerogenic DC abolished the induction of T cell anergy and suppressor function of iTregs. In contrast, IFN-α neither affected the priming of iTregs nor converted iTregs into effector T cells. CONCLUSIONS/SIGNIFICANCE: IFN-α inhibits the induction of T cell tolerance by reversing the tolerogenic function of human DC
Bifidobacterium bifidum Actively Changes the Gene Expression Profile Induced by Lactobacillus acidophilus in Murine Dendritic Cells
Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium bifidum Z9. L. acidophilus NCFM strongly induced expression of interferon (IFN)-β, other virus defence genes, and cytokine and chemokine genes related to the innate and the adaptive immune response. By contrast, B. bifidum Z9 up-regulated genes encoding cytokines and chemokines related to the innate immune response. Moreover, B. bifidum Z9 inhibited the expression of the Th1-promoting genes induced by L. acidophilus NCFM and had an additive effect on genes of the innate immune response and Th2 skewing genes. The gene encoding Jun dimerization protein 2 (JDP2), a transcription factor regulating the activation of JNK, was one of the few genes only induced by B. bifidum Z9. Neutralization of IFN-β abrogated L. acidophilus NCFM-induced expression of Th1-skewing genes, and blocking of the JNK pathway completely inhibited the expression of IFN-β. Our results indicate that B. bifidum Z9 actively inhibits the expression of genes related to the adaptive immune system in murine dendritic cells and that JPD2 via blocking of IFN-β plays a central role in this regulatory mechanism
- …