1,499 research outputs found

    Approximation of the acoustic radiation impedance of a cylindrical pipe

    Full text link
    Useful approximation formulae for radiation impedance are given for the reflection coefficients of both infinitely flanged and unflanged rigid-walled cylindrical ducts. The expressions guarantee that simple but necessary physical and mathematical principles are met, like hermitian symmetry for the reflection coefficient (identical behaviour of positive and negative frequencies) and causality for the impulse response. A non causal but more accurate expression is also proposed that is suitable for frequency-domain applications. The formulae are obtained by analytical and numerical fitting to reference results from Levine & Schwinger for the unflanged case and extracted from the radiation impedance matrix given by Zorumski for the infinite flanged case.Comment: Journal of Sound and Vibration (2008) accepte

    Combinatorial Conflicting Homozygosity (CCH) analysis enables the rapid identification of shared genomic regions in the presence of multiple phenocopies.

    Get PDF
    The ability to identify regions of the genome inherited with a dominant trait in one or more families has become increasingly valuable with the wide availability of high throughput sequencing technology. While a number of methods exist for mapping of homozygous variants segregating with recessive traits in consanguineous families, dominant conditions are conventionally analysed by linkage analysis, which requires computationally demanding haplotype reconstruction from marker genotypes and, even using advanced parallel approximation implementations, can take substantial time, particularly for large pedigrees. In addition, linkage analysis lacks sensitivity in the presence of phenocopies (individuals sharing the trait but not the genetic variant responsible). Combinatorial Conflicting Homozygosity (CCH) analysis uses high density biallelic single nucleotide polymorphism (SNP) marker genotypes to identify genetic loci within which consecutive markers are not homozygous for different alleles. This allows inference of identical by descent (IBD) inheritance of a haplotype among a set or subsets of related or unrelated individuals

    Density-Polarization Functional Theory of the response of a periodic insulating solid to an electric field.

    Get PDF
    The response of an infinite, periodic, insulating, solid to an infinitesimally small electric field is investigated in the framework of Density Functional Theory. We find that the applied perturbing potential is not a unique functional of the periodic density change~: it depends also on the change in the macroscopic {\em polarization}. Moreover, the dependence of the exchange-correlation energy on polarization induces an exchange-correlation electric field. These effects are exhibited for a model semiconductor. We also show that the scissor-operator technique is an approximate way of bypassing this polarization dependence.Comment: 11 pages, 1 Fig

    Stellar Mass Black Hole Binaries as ULXs

    Full text link
    Ultraluminous X-ray sources (ULXs) with Lx > 10^{39} ergs/s have been discovered in great numbers in external galaxies with ROSAT, Chandra, and XMM. The central question regarding this important class of sources is whether they represent an extension in the luminosity function of binary X-ray sources containing neutron stars and stellar-mass black holes (BHs), or a new class of objects, e.g., systems containing intermediate-mass black holes (100-1000 Msun). We have carried out a theoretical study to test whether a large fraction of the ULXs, especially those in galaxies with recent star formation activity, can be explained with binary systems containing stellar-mass black holes. To this end, we have applied a unique set of binary evolution models for black-hole X-ray binaries, coupled to a binary population synthesis code, to model the ULXs observed in external galaxies. We find that for donor stars with initial masses >10 Msun the mass transfer driven by the normal nuclear evolution of the donor star is sufficient to potentially power most ULXs. This is the case during core hydrogen burning and, to an even more pronounced degree, while the donor star ascends the giant branch, though the latter phases lasts only ~5% of the main sequence phase. We show that with only a modest violation of the Eddington limit, e.g., a factor of ~10, both the numbers and properties of the majority of the ULXs can be reproduced. One of our conclusions is that if stellar-mass black-hole binaries account for a significant fraction of ULXs in star-forming galaxies, then the rate of formation of such systems is ~3 x 10^{-7} per year normalized to a core-collapse supernova rate of 0.01 per year.Comment: 15 pages, 12 figure

    Information-rich path planning under general constraints using Rapidly-exploring Random Trees

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 99-104).This thesis introduces the Information-rich Rapidly-exploring Random Tree (IRRT), an extension of the RRT algorithm that embeds information collection as predicted using Fisher information matrices. The primary contribution of this trajectory generation algorithm is target-based information maximization in general (possibly heavily constrained) environments, with complex vehicle dynamic constraints and sensor limitations, including limited resolution and narrow field-of-view. Extensions of IRRT both for decentralized, multiagent missions and for information-rich planning with multimodal distributions are presented. IRRT is distinguished from previous solution strategies by its computational tractability and general constraint characterization. A progression of simulation results demonstrates that this implementation can generate complex target-tracking behaviors from a simple model of the trade-off between information gathering and goal arrival.by Daniel S. Levine.S.M
    • …
    corecore