1,821 research outputs found

    Dynamic transverse debondong of a single s-2 fiber

    Get PDF
    Fiber reinforced composites are becoming increasingly common due to their high strength to weight ratios as compared to more conventional materials. Along with this increased used comes the need to have a higher level of understanding of the material characteristics. Specifically, the interface between the fiber and matrix is of particular interest. Loss of adhesion at this interface, known as debonding, can greatly decrease material strength. There has been significant research into debdonding phenomena at low strain rates. However, there is still a need for further insight at higher strain rates. In addition, given the opacity of many epoxy resins, conventional imaging is often unable to record debonding events or is restricted to only transparent matrices. By integrating a Kolsky tension bar along with X-Ray Phase Contrast Imaging and a high speed camera, high strain rate debonding events of an opaque fiber reinforced composite are recorded and analyzed. Specifically, imaging of transverse debonding initiation and progression along with debonding loads are obtained in this researc

    Stars in the USNO-B1 Catalog with Proper Motions Between 1.0 and 5.0 arcseconds per year

    Full text link
    This paper examines a subset of objects from the USNO-B1 catalogue with listed proper motions between 1.0 and 5.0 arcseconds per year. We look at the degree of contamination within this range of proper motions, and point out the major sources of spurious high proper motion objects. Roughly 0.1% of the objects in the USNO-B1 catalogue with listed motions between 1.0 and 5.0 arcseconds per year are real. Comparison with the revised version of Luyten's Half Second catalogue indicates that USNO-B1 is only about 47% complete for stars in this range. Preliminary studies indicate that there may be a dip in completeness in USNO-B1 for objects with motions near 0.1 arcseconds per year. We also present two new stars with motions between 1.0 and 5.0 arcseconds per year, 36 new stars with confirmed motions between 0.1 and 1.0 arcseconds per year, several new common proper motion pairs, and the recovery of LHS237a (VBs3).Comment: 42 pages, 16 figures, uses AASTeX v5.2, accepted by A

    The Nucleus of Comet 10P/Tempel 2 in 2013 and Consequences Regarding Its Rotational State: Early Science from the Discovery Channel Telescope

    Full text link
    We present new lightcurve measurements of Comet 10P/Tempel 2 carried out with Lowell Observatory's Discovery Channel Telescope in early 2013 when the comet was at aphelion. These data represent some of the first science obtained with this new 4.3-m facility. With Tempel 2 having been observed to exhibit a small but ongoing spin-down in its rotation period for over two decades, our primary goals at this time were two-fold. First, to determine its current rotation period and compare it to that measured shortly after its most recent perihelion passage in 2010, and second, to disentangle the spin-down from synodic effects due to the solar day and the Earth's orbital motion and to determine the sense of rotation, i.e. prograde or retrograde. At our midpoint of 2013 Feb 24, the observed synodic period is 8.948+/-0.001 hr, exactly matching the predicted prograde rotation solution based on 2010 results, and yields a sidereal period of the identical value due to the solar and Earth synodic components just canceling out during the interval of the 2013 observations. The retrograde solution is ruled out because the associated sidereal periods in 2010 and 2013 are quite different even though we know that extremely little outgassing, needed to produce torques, occurred in this interval. With a definitive sense of rotation, the specific amounts of spin-down to the sidereal period could be assessed. The nominal values imply that the rate of spin-down has decreased over time, consistent with the secular drop in water production since 1988. Our data also exhibited an unexpectedly small lightcurve amplitude which appears to be associated with viewing from a large, negative sub-Earth latitude, and a lightcurve shape deviating from a simple sinusoid implying a highly irregularly shaped nucleus.Comment: Accepted by AJ; 12 pages of text (pre-print style), 3 tables, 2 figure

    The Stellar and Gas Kinematics of Several Irregular Galaxies

    Get PDF
    We present long-slit spectra of three irregular galaxies from which we determinethe stellar kinematics in two of the galaxies (NGC 1156 and NGC 4449) and ionized-gas kinematics in all three (including NGC 2366). We compare this to the optical morphology and to the HI kinematics of the galaxies. In the ionized gas, we see a linear velocity gradient in all three galaxies. In NGC 1156 we also detect a weak linear velocity gradient in the stars of (5+/-1/sin i) km/s/kpc to a radius of 1.6 kpc. The stars and gas are rotating about the same axis, but this is different from the major axis of the stellar bar which dominates the optical light of the galaxy. In NGC 4449 we do not detect organized rotation of the stars and place an upper limit of (3/sin i) km/s/kpc to a radius of 1.2 kpc. For NGC 4449, which has signs of a past interaction with another galaxy, we develop a model to fit the observed kinematics of the stars and gas. In this model the stellar component is in a rotating disk seen nearly face-on while the gas is in a tilted disk with orbits whose planes precess in the gravitational potential. This model reproduces the apparent counter-rotation of the inner gas of the galaxy. The peculiar orbits of the gas are presumed due to acquisition of gas in the past interaction.Comment: To be published in ApJ, November 20, 200

    A model for lopsided galactic disks

    Get PDF
    Many disk galaxies are lopsided: their brightest inner parts are displaced from the center of the outer isophotes, or the outer contours of the HI disk. This asymmetry is particularly common in small, low-luminosity galaxies. We argue here that long-lived lopsidedness is a consequence of the disk lying off-center in the potential of the galaxy's extended dark halo, and spinning in a sense retrograde to its orbit about the halo center. The stellar velocity field predicted by our gravitational N-body simulations is clearly asymmetric.Comment: 10 pages and 2 figures, AASTEX (aaspp4), to appear in ApJ

    The Shape of LITTLE THINGS Dwarf Galaxies DDO 46 and DDO 168: Understanding the stellar and gas kinematics

    Get PDF
    We present the stellar and gas kinematics of DDO 46 and DDO 168 from the LITTLE THINGS survey and determine their respective Vmax/sigma_z,0 values. We used the KPNO's 4-meter telescope with the Echelle spectrograph as a long-slit spectrograph. We acquired spectra of DDO 168 along four position angles by placing the slit over the morphological major and minor axes and two intermediate position angles. However, due to poor weather conditions during our observing run for DDO 46, we were able to extract only one useful data point from the morphological major axis. We determined a central stellar velocity dispersion perpendicular to the disk, sigma_z,0, of 13.5+/-8 km/s for DDO 46 and of 10.7+/-2.9 km/s for DDO 168. We then derived the maximum rotation speed in both galaxies using the LITTLE THINGS HI data. We separated bulk motions from non-circular motions using a double Gaussian decomposition technique and applied a tilted-ring model to the bulk velocity field. We corrected the observed HI rotation speeds for asymmetric drift and found a maximum velocity, Vmax, of 77.4 +/- 3.7 and 67.4 +/- 4.0 km/s for DDO 46 and DDO 168, respectively. Thus, we derived a kinematic measure, Vmax/sigma_z,0, of 5.7 +/- 0.6 for DDO 46 and 6.3 +/- 0.3 for DDO 168. Comparing these values to ones determined for spiral galaxies, we find that DDO 46 and DDO 168 have Vmax/sigma_z,0 values indicative of thin disks, which is in contrast to minor-to-major axis ratio studies

    The stellar velocity dispersion in the inner 1.3 disk scale-lengths of the irregular galaxy NGC 4449

    Full text link
    We present measurements of the stellar velocity dispersion in the inner 1 arcmin radius (1.3 disk scale-lengths) of the irregular galaxy NGC 4449 determined from long-slit absorption-line spectra. The average observed dispersion is 29 +/-2 km/s, the same as predicted from NGC 4449's luminosity. No significant rotation in the stars is detected. If we assume a maximum rotation speed of the stars from the model determined from the gas kinematics of Hunter et al. (2002), the ratio V_max/sigma_z measured globally is 3. This ratio is comparable to values measured in spiral galaxies, and implies that the stellar disk in NGC 4449 is kinematically relatively cold. The intrinsic minor-to-major axis ratio (b/a)_0 is predicted to be in the range 0.3-0.6, similar to values derived from the distribution of observed b/a of Im galaxies. However, V/sigma_z measured locally is 0.5-1.1, and so the circular velocity of NGC 4449 is comparable or less than the velocity of the stars within the central 1.3 disk scale-lengths of the galaxy.Comment: To be published in ApJ, Nov 200
    • …
    corecore