54 research outputs found

    β2-Glycoprotein I-Reactive T Cells in Autoimmune Disease

    Get PDF
    Anti-phospholipid syndrome (APS) and systemic lupus erythematosus (SLE) are autoimmune diseases characterized by autoantibody production and autoantibody-related pathology. Anti-phospholipid antibodies (aPL) are found in all patients with APS and in 20–30% of individuals with SLE. aPL recognize a number of autoantigens, but the primary target in both APS and SLE is β2-glycoprotein I (β2GPI). The production of IgG aPL in APS and SLE, as well as the association of aPL with certain MHC class II molecules, has led to investigation of the role of β2GPI-reactive T helper (Th). β2GPI-reactive CD4 Th cells have been associated with the presence of aPL and/or APS in both primary APS and secondary APS associated with SLE, as well as in SLE patients and healthy controls lacking aPL. CD4 T cells reactive with β2GPI have also been associated with atherosclerosis and found within atherosclerotic plaques. In most cases, the epitopes targeted by autoreactive β2GPI-reactive CD4 T cells in APS and SLE appear to arise as a consequence of antigenic processing of β2GPI that is structurally different from the soluble native form. This may arise from molecular interactions (e.g., with phospholipids), post-translational modification (e.g., oxidation or glycation), genetic alteration (e.g., β2GPI variants), or molecular mimicry (e.g., microbiota). A number of T cell epitopes have been characterized, particularly in Domain V, the lipid-binding domain of β2GPI. Possible sources of negatively charged lipid that bind β2GPI include oxidized LDL, activated platelets, microbiota (e.g., gut commensals), and dying (e.g., apoptotic) cells. Apoptotic cells not only bind β2GPI, but also express multiple other cellular autoantigens targeted in both APS and SLE. Dying cells that have bound β2GPI thus provide a rich source of autoantigens that can be recognized by B cells across a wide range of autoantigen specificities. β2GPI-reactive T cells could potentially provide T cell help to autoantigen-specific B cells that have taken up and processed apoptotic (or other dying) cells, and subsequently present β2GPI on their surface in the context of major histocompatibility complex (MHC) class II molecules. Here, we review the literature on β2GPI-reactive T cells, and highlight findings supporting the hypothesis that these T cells drive autoantibody production in both APS and SLE

    IgA Anti-β2-Glycoprotein I Autoantibodies Are Associated with an Increased Risk of Thromboembolic Events in Patients with Systemic Lupus Erythematosus

    Get PDF
    The clinical utility of testing for antiphospholipid antibodies (aPL) of IgA isotype remains controversial.To address this issue, we reasoned that if IgA aPL contribute to the clinical manifestations of the antiphospholipid syndrome, then an association with thromboembolic events should manifest in patients whose only aPL is of IgA isotype. We performed a retrospective chart review of 56 patients (31 with systemic lupus erythematosus [SLE] and 25 without SLE) whose only positive aPL was IgA anti-beta2-glycoprotein I (isolated IgA anti-beta2GPI) and compared their clinical features with 56 individually matched control patients without any aPL. Patients with isolated IgA anti-beta2GPI had a significantly increased number of thromboembolic events, as compared to controls. When patients were stratified into those with and without SLE, the association between isolated IgA anti-beta2GPI and thromboembolic events persisted for patients with SLE, but was lost for those without SLE. Titers of IgA anti-beta2GPI were significantly higher in SLE patients who suffered a thromboembolic event. Among patients with isolated IgA anti-beta2GPI, there was an increased prevalence of diseases or morbidities involving organs of mucosal immunity (i.e., gastrointestinal system, pulmonary system, and skin).The presence of isolated IgA anti-beta2GPI is associated with an increased risk of thromboembolic events, especially among patients with SLE. IgA anti-beta2GPI is associated with an increased prevalence of morbidities involving organs of mucosal immunity

    Exploitation of Apoptotic Regulation in Cancer

    No full text
    Within an organism, environmental stresses can trigger cell death, particularly apoptotic cell death. Apoptotic cells, themselves, are potent regulators of their cellular environment, involved primarily in effecting homeostatic control. Tumors, especially, exist in a dynamic balance of cell proliferation and cell death. This special feature of the tumorous microenvironment—namely, the prominence and persistence of cell death—necessarily entails a magnification of the extrinsic, postmortem effects of dead cells. In both normal and malignant tissues, apoptotic regulation is exerted through immune as well as non-immune mechanisms. Apoptotic cells suppress the repertoire of immune reactivities, both by attenuating innate (especially inflammatory) responses and by abrogating adaptive responses. In addition, apoptotic cells modulate multiple vital cell activities, including survival, proliferation (cell number), and growth (cell size). While the microenvironment of the tumor may contribute to apoptosis, the postmortem effects of apoptotic cells feature prominently in the reciprocal acclimatization between the tumor and its environment. In much the same way that pathogens evade the host’s defenses through exploitation of key aspects of innate and adaptive immunity, cancer cells subvert several normal homeostatic processes, in particular wound healing and organ regeneration, to transform and overtake their environment. In understanding this subversion, it is crucial to view a tumor not simply as a clone of malignant cells, but rather as a complex and highly organized structure in which there exists a multidirectional flow of information between the cancer cells themselves and the multiple other cell types and extracellular matrix components of which the tumor is comprised. Apoptotic cells, therefore, have the unfortunate consequence of facilitating tumorigenesis and tumor survival
    • …
    corecore