9,089 research outputs found

    Resolvent convergence of Sturm-Liouville operators with singular potentials

    Full text link
    In this paper we consider the Sturm-Liuoville operator in the Hilbert space L2L_2 with the singular complex potential of W2−1W^{-1}_2 and two-point boundary conditions. For this operator we give sufficient conditions for norm resolvent approximation by the operators of the same class.Comment: 6 pages, to appear in Math. Note

    QND and higher order effects for a nonlinear meter in an interferometric gravitational wave antenna

    Get PDF
    A new optical topology and signal readout strategy for a laser interferometer gravitational wave detector were proposed recently by Braginsky and Khalili . Their method is based on using a nonlinear medium inside a microwave oscillator to detect the gravitational-wave-induced spatial shift of the interferometer's standing optical wave. This paper proposes a quantum nondemolition (QND) scheme that could be realistically used for such a readout device and discusses a "fundamental" sensitivity limit imposed by a higher order optical effect.Comment: LaTex, 17 pages, 3 figure

    Quark structure of hadrons and high energy collisions

    Get PDF
    There exists a large field for phenomenological models in which the knowledge of the structure of hadrons in terms of QCD constituents obtained from deep inelastic scatterings is related to their behaviour in soft processes. One of the simplest and oldest models is the additive quark model, with the rules of quark statistics following from it. Originally, the relations of quark combinatorics for hadron yields were based on the qualitative description of a multiparticle production process as a process of the production of non-correlated quarks and antiquarks followed by their subsequent fusion into hadrons [20],[21]. As a large amount of new precision measurements appear, and, on the other hand, our understanding of QCD becomes deeper, a new level of understanding of quark-gluon physics in the region of soft interactions forces us to review the relations of quark combinatorics. To do so, an especially good possibility is provided by the experimental data for hadronic Z^0 decays which allow us to check the relations of quark combinatorics for a new type of processes: quark jets in the decays Z^0 -> q\bar{q} -> hadrons [32].Comment: 55 pages, 23 figure

    How to reduce the suspension thermal noise in LIGO without improving the Q's of the pendulum and violin modes

    Full text link
    The suspension noise in interferometric gravitational wave detectors is caused by losses at the top and the bottom attachments of each suspension fiber. We use the Fluctuation-Dissipation theorem to argue that by careful positioning of the laser beam spot on the mirror face it is possible to reduce the contribution of the bottom attachment point to the suspension noise by several orders of magnitude. For example, for the initial and enhanced LIGO design parameters (i.e. mirror masses and sizes, and suspension fibers' lengths and diameters) we predict a reduction of ∌100\sim 100 in the "bottom" spectral density throughout the band 35−100Hz35-100\hbox{Hz} of serious thermal noise. We then propose a readout scheme which suppresses the suspension noise contribution of the top attachment point. The idea is to monitor an averaged horizontal displacement of the fiber of length l l; this allows one to record the contribution of the top attachment point to the suspension noise, and later subtract it it from the interferometer readout. For enhanced LIGO this would allow a suppression factor about 100 in spectral density of suspension thermal noise.Comment: a few misprints corrected; submitted to Classical and Quantum Gravit

    Speed Meter As a Quantum Nondemolition Measuring Device for Force

    Get PDF
    Quantum noise is an important issue for advanced LIGO. Although it is in principle possible to beat the Standard Quantum Limit (SQL), no practical recipe has been found yet. This paper dicusses quantum noise in the context of speedmeter-a devise monitoring the speed of the testmass. The scheme proposed to overcome SQL in this case might be more practical than the methods based on monitoring position of the testmass.Comment: 7 pages of RevTex, 1 postscript figur

    Thermoelastic Noise and Homogeneous Thermal Noise in Finite Sized Gravitational-Wave Test Masses

    Get PDF
    An analysis is given of thermoelastic noise (thermal noise due to thermoelastic dissipation) in finite sized test masses of laser interferometer gravitational-wave detectors. Finite-size effects increase the thermoelastic noise by a modest amount; for example, for the sapphire test masses tentatively planned for LIGO-II and plausible beam-spot radii, the increase is less than or of order 10 per cent. As a side issue, errors are pointed out in the currently used formulas for conventional, homogeneous thermal noise (noise associated with dissipation which is homogeneous and described by an imaginary part of the Young's modulus) in finite sized test masses. Correction of these errors increases the homogeneous thermal noise by less than or of order 5 per cent for LIGO-II-type configurations.Comment: 10 pages and 3 figures; RevTeX; submitted to Physical Review

    Polaron and bipolaron transport in a charge segregated state of doped strongly correlated 2D semiconductor

    Full text link
    The 2D lattice gas model with competing short and long range interactions is appliedused for calculation of the incoherent charge transport in the classical strongly-correlated charge segregated polaronic state. We show, by means of Monte-Carlo simulations, that at high temperature the transport is dominated by hopping of the dissociated correlated polarons, where with thetheir mobility is inversely proportional to the temperature. At the temperatures below the clustering transition temperature the bipolaron transport becomes dominant. The energy barrier for the bipolaron hopping is determined by the Coulomb effects and is found to be lower than the barrier for the single-polaron hopping. This leads to drastically different temperature dependencies of mobilities for polarons and bipolarons at low temperatures

    Has HERA reached a new QCD regime?

    Get PDF
    These notes are a summary of our efforts to answer the question in the title. Our answer is in the affirmative as: (i) HERA data indicate a large value of the gluon structure function; (ii) no contradictions with the asymptotic predictions of high density QCD have been observed; and (iii) the numerical estimates of our model give a natural description of the size of deviation from the routine DGLAP explanation. We discuss the alternative approaches and possible new experiments.Comment: 29 pages, 37 figures in eps file
    • 

    corecore