35,956 research outputs found

    Distinguishing Marks of Simply-connected Universes

    Get PDF
    A statistical quantity suitable for distinguishing simply-connected Robertson-Walker (RW) universes is introduced, and its explicit expressions for the three possible classes of simply-connected RW universes with an uniform distribution of matter are determined. Graphs of the distinguishing mark for each class of RW universes are presented and analyzed.There sprout from our results an improvement on the procedure to extract the topological signature of multiply-connected RW universes, and a refined understanding of that topological signature of these universes studied in previous works.Comment: 13 pages, 4 figures, LaTeX2e. To appear in Int. J. Mod. Phys. D (2000

    Hurewicz Theorem for Assouad-Nagata dimension

    Full text link
    Given a function f ⁣:XYf\colon X\to Y of metric spaces, its {\it asymptotic dimension} \asdim(f) is the supremum of \asdim(A) such that AXA\subset X and \asdim(f(A))=0. Our main result is \begin{Thm} \label{ThmAInAbstract} \asdim(X)\leq \asdim(f)+\asdim(Y) for any large scale uniform function f ⁣:XYf\colon X\to Y. \end{Thm} \ref{ThmAInAbstract} generalizes a result of Bell and Dranishnikov in which ff is Lipschitz and XX is geodesic. We provide analogs of \ref{ThmAInAbstract} for Assouad-Nagata dimension dimAN\dim_{AN} and asymptotic Assouad-Nagata dimension \ANasdim. In case of linearly controlled asymptotic dimension \Lasdim we provide counterexamples to three questions in a list of problems of Dranishnikov. As an application of analogs of \ref{ThmAInAbstract} we prove \begin{Thm} \label{ThmBInAbstract} If 1KGH11\to K\to G\to H\to 1 is an exact sequence of groups and GG is finitely generated, then \ANasdim (G,d_G)\leq \ANasdim (K,d_G|K)+\ANasdim (H,d_H) for any word metrics metrics dGd_G on GG and dHd_H on HH. \end{Thm} \ref{ThmBInAbstract} extends a result of Bell and Dranishnikov for asymptotic dimension

    The twin paradox in compact spaces

    Get PDF
    Twins travelling at constant relative velocity will each see the other's time dilate leading to the apparent paradox that each twin believes the other ages more slowly. In a finite space, the twins can both be on inertial, periodic orbits so that they have the opportunity to compare their ages when their paths cross. As we show, they will agree on their respective ages and avoid the paradox. The resolution relies on the selection of a preferred frame singled out by the topology of the space.Comment: to be published in PRA, 3 page

    Blind Normalization of Speech From Different Channels

    Full text link
    We show how to construct a channel-independent representation of speech that has propagated through a noisy reverberant channel. This is done by blindly rescaling the cepstral time series by a non-linear function, with the form of this scale function being determined by previously encountered cepstra from that channel. The rescaled form of the time series is an invariant property of it in the following sense: it is unaffected if the time series is transformed by any time-independent invertible distortion. Because a linear channel with stationary noise and impulse response transforms cepstra in this way, the new technique can be used to remove the channel dependence of a cepstral time series. In experiments, the method achieved greater channel-independence than cepstral mean normalization, and it was comparable to the combination of cepstral mean normalization and spectral subtraction, despite the fact that no measurements of channel noise or reverberations were required (unlike spectral subtraction).Comment: 25 pages, 7 figure

    Signature for the Shape of the Universe

    Full text link
    If the universe has a nontrivial shape (topology) the sky may show multiple correlated images of cosmic objects. These correlations can be couched in terms of distance correlations. We propose a statistical quantity which can be used to reveal the topological signature of any Robertson-Walker (RW) spacetime with nontrivial topology. We also show through computer-aided simulations how one can extract the topological signatures of flat, elliptic, and hyperbolic RW universes with nontrivial topology.Comment: 11 pages, 3 figures, LaTeX2e. This paper is a direct ancestor of gr-qc/9911049, put in gr-qc archive to make it more accessibl

    Kinetic Inflation in Stringy and Other Cosmologies

    Get PDF
    An inflationary epoch driven by the kinetic energy density in a dynamical Planck mass is studied. In the conformally related Einstein frame it is easiest to see the demands of successful inflation cannot be satisfied by kinetic inflation alone. Viewed in the original Jordan-Brans-Dicke frame, the obstacle is manifest as a kind of graceful exit problem and/or a kind of flatness problem. These arguments indicate the weakness of only the simplest formulation. {}From them can be gleaned directions toward successful kinetic inflation.Comment: 26 pages, LaTeX, CITA-94-2

    Charge reversal of colloidal particles

    Full text link
    A theory is presented for the effective charge of colloidal particles in suspensions containing multivalent counterions. It is shown that if colloids are sufficiently strongly charged, the number of condensed multivalent counterion can exceed the bare colloidal charge leading to charge reversal. Charge renormalization in suspensions with multivalent counterions depends on a subtle interplay between the solvation energies of the multivalent counterions in the bulk and near the colloidal surface. We find that the effective charge is {\it not} a monotonically decreasing function of the multivalent salt concentration. Furthermore, contrary to the previous theories, it is found that except at very low concentrations, monovalent salt hinders the charge reversal. This conclusion is in agreement with the recent experiments and simulations

    The Nature of Superfluidity in Ultracold Fermi Gases Near Feshbach Resonances

    Get PDF
    We study the superfluid state of atomic Fermi gases using a BCS-BEC crossover theory. Our approach emphasizes non-condensed fermion pairs which strongly hybridize with their (Feshbach-induced) molecular boson counterparts. These pairs lead to pseudogap effects above TcT_c and non-BCS characteristics below. We discuss how these effects influence the experimental signatures of superfluidity.Comment: 4 pages, 3 figures, submitted to PRA Rapid Communications; introduction rewritten, figure replace

    Normal zone in YBa2Cu3O6+xYBa_2Cu_3O_{6+x}-coated conductors

    Full text link
    We consider the distribution of an electric field in YBCO-coated conductors for a situation in which the DC transport current is forced into the copper stabilizer due to a weak link -- a section of the superconducting film with a critical current less than the transport current. The electric field in the metal substrate is also discussed. The results are compared with recent experiments on normal zone propagation in coated conductors for which the substrate and stabilizer are insulated from each other. The potential difference between the substrate and stabilizer, and the electric field in the substrate outside the normal zone can be accounted for by a large screening length in the substrate, comparable to the length of the sample. During a quench, the electric field inside the interface between YBCO and stabilizer, as well as in the buffer layer, can be several orders of magnitude greater than the longitudinal macroscopic electric field inside the normal zone. We speculate on the possibility of using possible microscopic electric discharges caused by this large (\sim kV/cm) electric field as a means to detect a quench.Comment: 8 pages, 4 figure
    corecore