5,725 research outputs found
Rectifiability of Optimal Transportation Plans
The purpose of this note is to show that the solution to the Kantorovich
optimal transportation problem is supported on a Lipschitz manifold, provided
the cost is with non-singular mixed second derivative. We use this
result to provide a simple proof that solutions to Monge's optimal
transportation problem satisfy a change of variables equation almost
everywhere
Anisotropic Inflation from Extra Dimensions
Vacuum multidimensional cosmological models with internal spaces being
compact -dimensional Lie group manifolds are considered. Products of
3-spheres and manifold (a novelty in cosmology) are studied. It turns
out that the dynamical evolution of the internal space drives an accelerated
expansion of the external world (power law inflation). This generic solution
(attractor in a phase space) is determined by the Lie group space without any
fine tuning or arbitrary inflaton potentials. Matter in the four dimensions
appears in the form of a number of scalar fields representing anisotropic scale
factors for the internal space. Along the attractor solution the volume of the
internal space grows logarithmically in time. This simple and natural model
should be completed by mechanisms terminating the inflationary evolution and
transforming the geometric scalar fields into ordinary particles.Comment: LaTeX, 11 pages, 5 figures available via fax on request to
[email protected], submitted to Phys. Lett.
Experimental mouse model of optic neuritis with inflammatory demyelination produced by passive transfer of neuromyelitis optica-immunoglobulin G.
Background
Although optic neuritis (ON) is a defining feature of neuromyelitis optica (NMO), appropriate animal models of NMO ON are lacking. Most NMO patients are seropositive for immunoglobulin G autoantibodies (NMO-IgG) against the astrocyte water channel aquaporin-4 (AQP4).
Methods
Several approaches were tested to develop a robust, passive-transfer mouse model of NMO ON, including NMO-IgG and complement delivery by: (i) retrobulbar infusion; (ii) intravitreal injection; (iii) a single intracranial injection near the optic chiasm; and (iv) 3-days continuous intracranial infusion near the optic chiasm.
Results
Little ON or retinal pathology was seen using approaches (i) to (iii). Using approach (iv), however, optic nerves showed characteristic NMO pathology, with loss of AQP4 and glial fibrillary acidic protein immunoreactivity, granulocyte and macrophage infiltration, deposition of activated complement, demyelination and axonal injury. Even more extensive pathology was created in mice lacking complement inhibitor protein CD59, or using a genetically modified NMO-IgG with enhanced complement effector function, including significant loss of retinal ganglion cells. In control studies, optic nerve pathology was absent in treated AQP4-deficient mice, or in wild-type mice receiving control (non-NMO) IgG and complement.
Conclusion
Passive transfer of NMO-IgG and complement by continuous infusion near the optic chiasm in mice is sufficient to produce ON with characteristic NMO pathology. The mouse model of NMO ON should be useful in further studies of NMO pathogenesis mechanisms and therapeutics
Peptides derived from the HIV-1 integrase promote HIV-1 infection and multi-integration of viral cDNA in LEDGF/p75-knockdown cells
<p>Abstract</p> <p>Background</p> <p>The presence of the cellular Lens Epithelium Derived Growth Factor p75 (LEDGF/p75) protein is essential for integration of the Human immunodeficiency virus type 1 (HIV-1) cDNA and for efficient virus production. In the absence of LEDGF/p75 very little integration and virus production can be detected, as was demonstrated using LEDGF/p75-knokdown cells.</p> <p>Results</p> <p>Here we show that the failure to infect LEDGF/p75-knockdown cells has another reason aside from the lack of LEDGF/p75. It is also due to inhibition of the viral integrase (IN) enzymatic activity by an early expressed viral Rev protein. The formation of an inhibitory Rev-IN complex in virus-infected cells can be disrupted by the addition of three IN-derived, cell-permeable peptides, designated INr (IN derived-Rev interacting peptides) and INS (IN derived-integrase stimulatory peptide). The results of the present work confirm previous results showing that HIV-1 fails to infect LEDGF/p75-knockdown cells. However, in the presence of INrs and INS peptides, relatively high levels of viral cDNA integration as well as productive virus infection were obtained following infection by a wild type (WT) HIV-1 of LEDGF/p75-knockdown cells.</p> <p>Conclusions</p> <p>It appears that the lack of integration observed in HIV-1 infected LEDGF/p75-knockdown cells is due mainly to the inhibitory effect of Rev following the formation of a Rev-IN complex. Disruption of this inhibitory complex leads to productive infection in those cells.</p
Genetics of height and risk of atrial fibrillation: A Mendelian randomization study.
BACKGROUND: Observational studies have identified height as a strong risk factor for atrial fibrillation, but this finding may be limited by residual confounding. We aimed to examine genetic variation in height within the Mendelian randomization (MR) framework to determine whether height has a causal effect on risk of atrial fibrillation. METHODS AND FINDINGS: In summary-level analyses, MR was performed using summary statistics from genome-wide association studies of height (GIANT/UK Biobank; 693,529 individuals) and atrial fibrillation (AFGen; 65,446 cases and 522,744 controls), finding that each 1-SD increase in genetically predicted height increased the odds of atrial fibrillation (odds ratio [OR] 1.34; 95% CI 1.29 to 1.40; p = 5 × 10-42). This result remained consistent in sensitivity analyses with MR methods that make different assumptions about the presence of pleiotropy, and when accounting for the effects of traditional cardiovascular risk factors on atrial fibrillation. Individual-level phenome-wide association studies of height and a height genetic risk score were performed among 6,567 European-ancestry participants of the Penn Medicine Biobank (median age at enrollment 63 years, interquartile range 55-72; 38% female; recruitment 2008-2015), confirming prior observational associations between height and atrial fibrillation. Individual-level MR confirmed that each 1-SD increase in height increased the odds of atrial fibrillation, including adjustment for clinical and echocardiographic confounders (OR 1.89; 95% CI 1.50 to 2.40; p = 0.007). The main limitations of this study include potential bias from pleiotropic effects of genetic variants, and lack of generalizability of individual-level findings to non-European populations. CONCLUSIONS: In this study, we observed evidence that height is likely a positive causal risk factor for atrial fibrillation. Further study is needed to determine whether risk prediction tools including height or anthropometric risk factors can be used to improve screening and primary prevention of atrial fibrillation, and whether biological pathways involved in height may offer new targets for treatment of atrial fibrillation
Lack of phenotypic and evolutionary cross-resistance against parasitoids and pathogens in Drosophila melanogaster
BackgroundWhen organisms are attacked by multiple natural enemies, the evolution of a resistance mechanism to one natural enemy will be influenced by the degree of cross-resistance to another natural enemy. Cross-resistance can be positive, when a resistance mechanism against one natural enemy also offers resistance to another; or negative, in the form of a trade-off, when an increase in resistance against one natural enemy results in a decrease in resistance against another. Using Drosophila melanogaster, an important model system for the evolution of invertebrate immunity, we test for the existence of cross-resistance against parasites and pathogens, at both a phenotypic and evolutionary level.MethodsWe used a field strain of D. melanogaster to test whether surviving parasitism by the parasitoid Asobara tabida has an effect on the resistance against Beauveria bassiana, an entomopathogenic fungus; and whether infection with the microsporidian Tubulinosema kingi has an effect on the resistance against A. tabida. We used lines selected for increased resistance to A. tabida to test whether increased parasitoid resistance has an effect on resistance against B. bassiana and T. kingi. We used lines selected for increased tolerance against B. bassiana to test whether increased fungal resistance has an effect on resistance against A. tabida.Results/ConclusionsWe found no positive cross-resistance or trade-offs in the resistance to parasites and pathogens. This is an important finding, given the use of D. melanogaster as a model system for the evolution of invertebrate immunity. The lack of any cross-resistance to parasites and pathogens, at both the phenotypic and the evolutionary level, suggests that evolution of resistance against one class of natural enemies is largely independent of evolution of resistance against the other
Detectability of colorectal neoplasia with fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT)
The purpose of this study was to analyze the detectability of colorectal neoplasia with fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT).
Data for a total of 492 patients who had undergone both PET/CT and colonoscopy were analyzed. After the findings of PET/CT and colonoscopy were determined independently, the results were compared in each of the six colonic sites examined in all patients. The efficacy of PET/CT was determined using colonoscopic examination as the gold standard.
In all, 270 colorectal lesions 5 mm or more in size, including 70 pathologically confirmed malignant lesions, were found in 172 patients by colonoscopy. The sensitivity and specificity of PET/CT for detecting any of the colorectal lesions were 36 and 98%, respectively. For detecting lesions 11 mm or larger, the sensitivity was increased to 85%, with the specificity remaining consistent (97%). Moreover, the sensitivity for tumors 21 mm or larger was 96% (48/50). Tumors with malignant or high-grade pathology were likely to be positive with PET/CT. A size of 10 mm or smaller [odds ratio (OR) 44.14, 95% confidence interval (95% CI) 11.44-221.67] and flat morphology (OR 7.78, 95% CI 1.79-36.25) were significant factors that were associated with false-negative cases on PET/CT.
The sensitivity of PET/CT for detecting colorectal lesions is acceptable, showing size- and pathology-dependence, suggesting, for the most part, that clinically relevant lesions are detectable with PET/CT. However, when considering PET/CT for screening purposes caution must be exercised because there are cases of false-negative results
Endothelin receptor B antagonists decrease glioma cell viability independently of their cognate receptor
Background:
Endothelin receptor antagonists inhibit the progression of many cancers, but research into their influence on glioma has been limited.
Methods:
We treated glioma cell lines, LN-229 and SW1088, and melanoma cell lines, A375 and WM35, with two endothelin receptor type B (ETRB)-specific antagonists, A-192621 and BQ788, and quantified viable cells by the capacity of their intracellular esterases to convert non-fluorescent calcein AM into green-fluorescent calcein. We assessed cell proliferation by labeling cells with carboxyfluorescein diacetate succinimidyl ester and quantifying the fluorescence by FACS analysis. We also examined the cell cycle status using BrdU/propidium iodide double staining and FACS analysis. We evaluated changes in gene expression by microarray analysis following treatment with A-192621 in glioma cells. We examined the role of ETRB by reducing its expression level using small interfering RNA (siRNA).
Results:
We report that two ETRB-specific antagonists, A-192621 and BQ788, reduce the number of viable cells in two glioma cell lines in a dose- and time-dependent manner. We describe similar results for two melanoma cell lines. The more potent of the two antagonists, A-192621, decreases the mean number of cell divisions at least in part by inducing a G2/M arrest and apoptosis. Microarray analysis of the effects of A-192621 treatment reveals up-regulation of several DNA damage-inducible genes. These results were confirmed by real-time RT-PCR. Importantly, reducing expression of ETRB with siRNAs does not abrogate the effects of either A-192621 or BQ788 in glioma or melanoma cells. Furthermore, BQ123, an endothelin receptor type A (ETRA)-specific antagonist, has no effect on cell viability in any of these cell lines, indicating that the ETRB-independent effects on cell viability exhibited by A-192621 and BQ788 are not a result of ETRA inhibition.
Conclusion:
While ETRB antagonists reduce the viability of glioma cells in vitro, it appears unlikely that this effect is mediated by ETRB inhibition or cross-reaction with ETRA. Instead, we present evidence that A-192621 affects glioma and melanoma viability by activating stress/DNA damage response pathways, which leads to cell cycle arrest and apoptosis. This is the first evidence linking ETRB antagonist treatment to enhanced expression of DNA damage-inducible genes
Low Frequency Vibrations Disrupt Left-Right Patterning in the Xenopus Embryo
The development of consistent left-right (LR) asymmetry across phyla is a fascinating question in biology. While many pharmacological and molecular approaches have been used to explore molecular mechanisms, it has proven difficult to exert precise temporal control over functional perturbations. Here, we took advantage of acoustical vibration to disrupt LR patterning in Xenopus embryos during tightly-circumscribed periods of development. Exposure to several low frequencies induced specific randomization of three internal organs (heterotaxia). Investigating one frequency (7 Hz), we found two discrete periods of sensitivity to vibration; during the first period, vibration affected the same LR pathway as nocodazole, while during the second period, vibration affected the integrity of the epithelial barrier; both are required for normal LR patterning. Our results indicate that low frequency vibrations disrupt two steps in the early LR pathway: the orientation of the LR axis with the other two axes, and the amplification/restriction of downstream LR signals to asymmetric organs
- …