862 research outputs found

    Antithrombin in sepsis revisited

    Get PDF
    As the pivotal phase III randomized controlled clinical trial on antithrombin concentrate in patients with severe sepsis did not show a beneficial effect of antithrombin treatment on 28-day mortality, the interest in the potential use of this treatment modality in sepsis has diminished. However, recent data on the effect of antithrombin administration on coagulation in combination with recent analyses from the clinical trials that were aimed to restore physiological anticoagulant pathways in patients with sepsis may revitalize the interest in antithrombin concentrate for the treatment of severe sepsis

    Treatment with recombinant human activated protein C: one size does not fit all

    Get PDF
    Protein C plays an important role in the coagulopathy associated with sepsis and probably also in the pathogenesis of sepsis-induced organ dysfunction. Plasma levels of protein C strongly correlate with clinical outcome in patients with severe sepsis. The RESPOND (Research Evaluating Serial Protein C Levels in Severe Sepsis Patients on Drotrecogin Alfa [Activated]) study shows that administration of recombinant human activated protein C in patients with severe sepsis with alternative dose regimens adjusted to plasma levels of protein C results in higher plasma levels of protein C. This may potentially translate to a better clinical outcome in patients with severe sepsis, although that was not directly shown in this trial

    The inflammation–coagulation axis as an important intermediate pathway in acute lung injury

    Get PDF
    Markers of inflammation, coagulation, and fibrinolysis predict an adverse outcome in patients with sepsis. These markers also seem predictive of an adverse outcome in patients with localized infection and inflammation, such as in acute lung injury. Whether this is entirely related to the disease or is also due to ventilation strategies that may be harmful for the lungs, however, is not clear. In the present issue of Critical Care, McClintock and colleagues demonstrate that these biomarkers retain their predictive effect even if lung-protective ventilation strategies are applied. Besides being biomarkers that predict outcome in patients with acute lung injury, their activation of inflammation and coagulation seems also to play a pivotal role in the pathogenesis of acute lung injury, and may thereby represent an interesting novel target for therapeutic intervention

    Coagulation abnormalities in critically ill patients

    Get PDF
    Many critically ill patients develop hemostatic abnormalities, ranging from isolated thrombocytopenia or prolonged global clotting tests to complex defects, such as disseminated intravascular coagulation. There are many causes for a deranged coagulation in critically ill patients and each of these underlying disorders may require specific therapeutic or supportive management. In recent years, new insights into the pathogenesis and clinical management of many coagulation defects in critically ill patients have been accumulated and this knowledge is helpful in determining the optimal diagnostic and therapeutic strategy

    Recombinant human activated protein C: current insights into its mechanism of action

    Get PDF
    Impairment of the protein C pathway plays a central role in the pathogenesis of sepsis. Administration of recombinant human activated protein C (rhAPC) may correct the dysregulated anticoagulant mechanism and prevent propagation of thrombin generation and formation of microvascular thrombosis. Furthermore, it may simultaneously modulate the inflammatory response. It is likely that the beneficial effect of rhAPC observed in experimental and clinical studies of severe sepsis results from a combination of mechanisms that modulate the entangled processes of coagulation and inflammation. This review presents an analysis of the various mechanisms of action of rhAPC in sepsis

    Impact of the factor V Leiden mutation on the outcome of pneumococcal pneumonia: a controlled laboratory study

    Get PDF
    Introduction: Streptococcus (S.) pneumoniae is the most common cause of community-acquired pneumonia. The factor V Leiden (FVL) mutation results in resistance of activated FV to inactivation by activated protein C and thereby in a prothrombotic phenotype. Human heterozygous FVL carriers have been reported to be relatively protected against sepsis-related mortality. We here determined the effect of the FVL mutation on coagulation, inflammation, bacterial outgrowth and outcome in murine pneumococcal pneumonia. Methods: Wild-type mice and mice heterozygous or homozygous for the FVL mutation were infected intranasally with 2*10(6) colony forming units of viable S. pneumoniae. Mice were euthanized after 24 or 48 hours or observed in a survival study. In separate experiments mice were treated with ceftriaxone intraperitoneally 24 hours after infection and euthanized after 48 hours or observed in a survival study. Results: The FVL mutation had no consistent effect on activation of coagulation in either the presence or absence of ceftriaxone therapy, as reflected by comparable lung and plasma levels of thrombin-antithrombin complexes and fibrin degradation products. Moreover, the FVL mutation had no effect on lung histopathology, neutrophil influx, cytokine and chemokine levels or bacterial outgrowth. Remarkably, homozygous FVL mice were strongly protected against death due to pneumococcal pneumonia when treated with ceftriaxone, which was associated with more pronounced FXIII depletion; this protective effect was not observed in the absence of antibiotic therapy. Conclusions: Homozygosity for the FVL mutation protects against lethality due to pneumococcal pneumonia in mice treated with antibiotic

    Successful pulmonary administration of activated recombinant factor VII in diffuse alveolar hemorrhage

    Get PDF
    INTRODUCTION: Diffuse alveolar hemorrhage (DAH) is a serious pulmonary complication seen in patients with autoimmune disorders and patients treated with chemotherapy or after hematopoietic stem cell transplantation. The clinical management of DAH is complex and the condition has a high mortality rate. Tissue factor is expressed in the lung alveoli during inflammation and therefore pulmonary administration of human recombinant activated factor VIIa (rFVIIa) could be a rational treatment option. METHODS: Six patients with acute, bronchoscopically confirmed DAH from a single intensive care unit university hospital center were included in the study of acute DAH in critically ill patients. The patients were treated with intrapulmonary administration of 50 μg/kg rFVIIa in 50 ml of sodium chloride by bronchoalveolar lavage (BAL) with 25 ml in each of the main bronchi, which was repeated after 24 hours in case of treatment failure. RESULTS: An excellent response, defined as complete and sustained hemostasis after a single dose of rFVIIa, was seen in three patients. A good response, meaning that sustained hemostasis was achieved by a repeated rFVIIa administration, was seen in the remaining three patients. In one of these patients, the BAL treatment was repeated twice; in another patient, the second dose of rFVIIa was administered by nebulizer after extubation after the initial BAL. The hemostatic effect was statistically significant (p = 0.031). The oxygenation capacity, as reflected by the PaO(2)/FiO(2 )(arterial oxygen pressure/inspiratory fractional oxygen content) ratio, increased significantly (p = 0.024) in all six patients following the local rFVIIa therapy. CONCLUSION: Symptomatic therapy of DAH after intrapulmonary administration of one or more doses of rFVIIa was found to have a good to excellent hemostatic effect in six consecutive patients with DAH. The intrapulmonary administration of rFVIIa seemed to have a high benefit-to-risk ratio. Larger series should confirm the safety of this approach

    Factors that predict outcome of intensive care treatment in very elderly patients: a review

    Get PDF
    INTRODUCTION: Advanced age is thought to be associated with increased mortality in critically ill patients. This report reviews available data on factors that determine outcome, on the value of prognostic models, and on preferences regarding life-sustaining treatments in (very) elderly intensive care unit (ICU) patients. METHODS: We searched the Medline database (January 1966 to January 2005) for English language articles. Selected articles were cross-checked for other relevant publications. RESULTS: Mortality rates are higher in elderly ICU patients than in younger patients. However, it is not age per se but associated factors, such as severity of illness and premorbid functional status, that appear to be responsible for the poorer prognosis. Patients' preferences regarding life-sustaining treatments are importantly influenced by the likelihood of a beneficial outcome. Commonly used prognostic models have not been calibrated for use in the very elderly. Furthermore, they do not address long-term survival and functional outcome. CONCLUSION: We advocate the development of new prognostic models, validated in elderly ICU patients, that predict not only survival but also functional and cognitive status after discharge. Such a model may support informed decision making with respect to patients' preferences

    Identification of high-risk subgroups in very elderly intensive care unit patients

    Get PDF
    INTRODUCTION: Current prognostic models for intensive care unit (ICU) patients have not been specifically developed or validated in the very elderly. The aim of this study was to develop a prognostic model for ICU patients 80 years old or older to predict in-hospital mortality by means of data obtained within 24 hours after ICU admission. Aside from having good overall performance, the model was designed to reliably and specifically identify subgroups at very high risk of dying. METHODS: A total of 6,867 consecutive patients 80 years old or older from 21 Dutch ICUs were studied. Data necessary to calculate the Glasgow Coma Scale, Acute Physiology and Chronic Health Evaluation II, Simplified Acute Physiology Score II (SAPS II), Mortality Probability Models II scores, and ICU and hospital survival were recorded. Data were randomly divided into a developmental (n = 4,587) and a validation (n = 2,289) set. By means of recursive partitioning analysis, a classification tree predicting in-hospital mortality was developed. This model was compared with the original SAPS II model and with the SAPS II model after recalibration for very elderly ICU patients in the Netherlands. RESULTS: Overall performance measured by the area under the receiver operating characteristic curve and by the Brier score was similar for the classification tree, the original SAPS II model, and the recalibrated SAPS II model. The tree identified most patients with very high risk of mortality (9.2% of patients versus 8.9% for the original SAPS II and 5.9% for the recalibrated SAPS II had a risk of more than 80%). With a cut-point at a risk of 80%, the positive predictive values were 0.88 for the tree, 0.83 for the original SAPS II, and 0.87 for the recalibrated SAPS II. CONCLUSION: Prognostic models with good overall performance may also reliably identify subgroups of very elderly ICU patients who have a very high risk of dying before hospital discharge. The classification tree has the advantage of identifying the separate factors contributing to bad outcome and of using few variables. Up to 9.5% of patients were found to have a risk to die of more than 85

    Improvement in the regulation of the vitamin K antagonist acenocoumarol after a standard initial dose regimen: prospective validation of a prescription model

    Get PDF
    Background In a retrospective study we have developed a model which determines the dose of acenocoumarol based on the age of the patient and on the first INR obtained after a standard initial loading dose. The group of patients of this study was used as the control group of the present study. Aim The aim of this study was to prospectively validate the model and to assess whether the use of this model improves the quality of the treatment in the 0-2 months study period. Patients and methods In 197 patients the model was evaluated by (1) in the initial phase: comparison of INRs with the control group, after assessing the dose according to the model, and (2) in the 0-2 months period: calculation of the percentage of time spent in the therapeutic target range compared to the control group. Furthermore, the eventual dose was compared to the dose of the model when the INRs were within the therapeutic target range for the first time and on two successive occasions. Results (1) When dosed according to the model, 50% of INRs in the total group were within the therapeutic target range compared to 45% in the control group, and (2) the percentage time spent within this range was 68 in the total group compared to 63 in the control group (P = 0.0013). When the INRs were within the range for the first time and successively twice, the eventual doses were similar to the model in 59 and 50%, respectively. About 20% of the patients did not achieve two successive INRs within the range. Conclusions Using the model the quality of treatment improved. We advice to use a standardized individualized dose regimen at the initiation of vitamin K antagonist treatmen
    • …
    corecore