33 research outputs found
Recommended from our members
Five years of ocrelizumab in relapsing multiple sclerosis : OPERA studies open-label extension
Objective: To assess over 3 years of follow-up the effects of maintaining or switching to ocrelizumab (OCR) therapy on clinical and MRI outcomes and safety measures in the open-label extension (OLE) phase of the pooled OPERA: I/II studies in relapsing multiple sclerosis. Methods:After 2 years of double-blind, controlled treatment, patients continued OCR (600 mg infusions every 24 weeks) or switched from interferon (IFN)-β-1a (44 g 3 times weekly) to OCR when entering the OLE phase (3 years). Adjusted annualized relapse rate, time to onset of 24-week confirmed disability progression (CDP)/improvement (CDP), brain MRI activity (gadolinium-enhanced and new/enlarging T2 lesions), and percentage brain volume change were analyzed. Results:Of patients entering the OLE phase, 88.6% completed year 5. The cumulative proportion with 24-week CDP was lower in patients who initiated OCR earlier vs patients initially receiving IFN-β-1a (16.1% vs 21.3% at year 5; p = 0.014). Patients continuing OCR maintained and those switching from IFN-β-1a to OCR attained near complete and sustained suppression of new brain MRI lesion activity from years 3-5. Over the OLE phase, patients continuing OCR exhibited less whole brain volume loss from double-blind study baseline vs those switching from IFN-β-1a (-1.87% vs-2.15% at year 5; p < 0.01). Adverse events were consistent with past reports and no new safety signals emerged with prolonged treatment.ConclusionCompared with patients switching from IFN-β-1a, earlier and continuous OCR treatment up to 5 years provided sustained benefit on clinical and MRI measures of disease progression.Classification of evidenceThis study provides Class III evidence that earlier and continuous treatment with OCR provided sustained benefit on clinical and MRI outcomes of disease activity and progression compared with patients switching from IFN-β-1a. The study is rated Class III because of the initial treatment randomization disclosure that occurred after inclusion in OLE.Clinical trial identifiersNCT01247324/NCT01412333
Educational level-dependent melanoma awareness in a high-risk population in Switzerland
IntroductionThe worldwide incidence of melanoma has been increasing rapidly in recent decades with Switzerland having one of the highest rates in Europe. Ultraviolet (UV) radiation is one of the main risk factors for skin cancer. Our objective was to investigate UV protective behavior and melanoma awareness in a high-risk cohort for melanoma.MethodsIn this prospective monocentric study, we assessed general melanoma awareness and UV protection habits in at-risk patients (≥100 nevi, ≥5 dysplastic nevi, known CDKN2A mutation, and/or positive family history) and melanoma patients using questionnaires. ResultsBetween 01/2021 and 03/ 2022, a total of 269 patients (53.5% at-risk patients, 46.5% melanoma patients) were included. We observed a significant trend toward using a higher sun protection factor (SPF) in melanoma patients compared with at-risk patients (SPF 50+: 48% [n=60] vs. 26% [n=37]; p=0.0016). Those with a college or university degree used a high SPF significantly more often than patients with lower education levels (p=0.0007). However, higher educational levels correlated with increased annual sun exposure (p=0.041). Neither a positive family history for melanoma, nor gender or Fitzpatrick skin type influenced sun protection behavior. An age of ≥ 50 years presented as a significant risk factor for melanoma development with an odd’s ratio of 2.32. Study participation resulted in improved sun protection behavior with 51% reporting more frequent sunscreen use after study inclusion. DiscussionUV protection remains a critical factor in melanoma prevention. We suggest that melanoma awareness should continue to be raised through public skin cancer prevention campaigns with a particular focus on individuals with low levels of education
The A-rich RNA sequences of HIV-1 pol are important for the synthesis of viral cDNA
The bias of A-rich codons in HIV-1 pol is thought to be a record of hypermutations in viral genomes that lack biological functions. Bioinformatic analysis predicted that A-rich sequences are generally associated with minimal local RNA structures. Using codon modifications to reduce the amount of A-rich sequences within HIV-1 genomes, we have reduced the flexibility of RNA sequences in pol to analyze the functional significance of these A-rich ‘structurally poor’ RNA elements in HIV-1 pol. Our data showed that codon modification of HIV-1 sequences led to a suppression of virus infectivity by 5–100-fold, and this defect does not correlate with, viral entry, viral protein expression levels, viral protein profiles or virion packaging of genomic RNA. Codon modification of HIV-1 pol correlated with an enhanced dimer stability of the viral RNA genome, which was associated with a reduction of viral cDNA synthesis both during HIV-1 infection and in a cell free reverse transcription assay. Our data provided direct evidence that the HIV-1 A-rich pol sequence is not merely an evolutionary artifact of enzyme-induced hypermutations, and that HIV-1 has adapted to rely on A-rich RNA sequences to support the synthesis of viral cDNA during reverse transcription, highlighting the utility of using ‘structurally poor’ RNA domains in regulating biological process
Status and prospects for renewable energy using wood pellets from the southeastern United States
The ongoing debate about costs and benefits of wood-pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants. We ask, ‘How is the production of wood pellets in the SE USA affecting forest systems and the ecosystem services they provide?’ To address this question, we review current forest conditions and the status of the wood products industry, how pellet production affects ecosystem services and biodiversity, and what methods are in place to monitor changes and protect vulnerable systems. Scientific studies provide evidence that wood pellets in the SE USA are a fraction of total forestry operations and can be produced while maintaining or improving forest ecosystem services. Ecosystem services are protected by the requirement to utilize loggers trained to apply scientifically based best management practices in planning and implementing harvest for the export market. Bioenergy markets supplement incomes to private rural landholders and provide an incentive for forest management practices that simultaneously benefit water quality and wildlife and reduce risk of fire and insect outbreaks. Bioenergy also increases the value of forest land to landowners, thereby decreasing likelihood of conversion to nonforest uses. Monitoring and evaluation are essential to verify that regulations and good practices are achieving goals and to enable timely responses if problems arise. Conducting rigorous research to understand how conditions change in response to management choices requires baseline data, monitoring, and appropriate reference scenarios. Long-term monitoring data on forest conditions should be publicly accessible and utilized to inform adaptive management
Precision and accuracy of single-molecule FRET measurements - a multi-laboratory benchmark study
Single-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ±0.02 and ±0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods
Ultralight vector dark matter search using data from the KAGRA O3GK run
Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo
Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level