20 research outputs found

    A New Design for Open and Scalable Collaboration of Independent Databases in Digitally Connected Enterprises

    Get PDF
    “Digitally connected enterprises” refers to e-business, global supply chains, and other new business designs of the Knowledge Economy; all of which require open and scalable information supply chains across independent enterprises. Connecting proprietarily designed and controlled enterprise databases in these information supply chains is a critical success factor for them. Previous connection designs tend to rely on “hard-coded” regimes, which do not respond well to disruptions (including changes and failures), and do not afford these enterprises sufficient flexibility to join simultaneously in multiple supply chain regimes and share information for the benefit of all. The paper develops a new design: It combines matchmaking with global database query, and thereby supports the interoperation of independent databases to form on-demand information supply chains. The design provides flexible (re-)configuration to decrease the impact of disruption, and proactive control to increase collaboration and information sharing. More broadly, the papers results contribute to a new Information System design method for massively extended enterprises, and facilitate new business designs using digital connections at the level of databases

    Moment Closure - A Brief Review

    Full text link
    Moment closure methods appear in myriad scientific disciplines in the modelling of complex systems. The goal is to achieve a closed form of a large, usually even infinite, set of coupled differential (or difference) equations. Each equation describes the evolution of one "moment", a suitable coarse-grained quantity computable from the full state space. If the system is too large for analytical and/or numerical methods, then one aims to reduce it by finding a moment closure relation expressing "higher-order moments" in terms of "lower-order moments". In this brief review, we focus on highlighting how moment closure methods occur in different contexts. We also conjecture via a geometric explanation why it has been difficult to rigorously justify many moment closure approximations although they work very well in practice.Comment: short survey paper (max 20 pages) for a broad audience in mathematics, physics, chemistry and quantitative biolog

    Loss associated with subtractive health service change: The case of specialist cancer centralization in England

    Get PDF
    OBJECTIVE: Major system change can be stressful for staff involved and can result in 'subtractive change' - that is, when a part of the work environment is removed or ceases to exist. Little is known about the response to loss of activity resulting from such changes. Our aim was to understand perceptions of loss in response to centralization of cancer services in England, where 12 sites offering specialist surgery were reduced to four, and to understand the impact of leadership and management on enabling or hampering coping strategies associated with that loss. METHODS: We analysed 115 interviews with clinical, nursing and managerial staff from oesophago-gastric, prostate/bladder and renal cancer services in London and West Essex. In addition, we used 134 hours of observational data and analysis from over 100 documents to contextualize and to interpret the interview data. We performed a thematic analysis drawing on stress-coping theory and organizational change. RESULTS: Staff perceived that, during centralization, sites were devalued as the sites lost surgical activity, skills and experienced teams. Staff members believed that there were long-term implications for this loss, such as in retaining high-calibre staff, attracting trainees and maintaining autonomy. Emotional repercussions for staff included perceived loss of status and motivation. To mitigate these losses, leaders in the centralization process put in place some instrumental measures, such as joint contracting, surgical skill development opportunities and trainee rotation. However, these measures were undermined by patchy implementation and negative impacts on some individuals (e.g. increased workload or travel time). Relatively little emotional support was perceived to be offered. Leaders sometimes characterized adverse emotional reactions to the centralization as resistance, to be overcome through persuasion and appeals to the success of the new system. CONCLUSIONS: Large-scale reorganizations are likely to provoke a high degree of emotion and perceptions of loss. Resources to foster coping and resilience should be made available to all organizations within the system as they go through major change

    Centralisation of specialist cancer surgery services in two areas of England: the RESPECT-21 mixed-methods evaluation

    Get PDF
    Background: Centralising specialist cancer surgical services is an example of major system change. High-volume centres are recommended to improve specialist cancer surgery care and outcomes. Objective: Our aim was to use a mixed-methods approach to evaluate the centralisation of specialist surgery for prostate, bladder, renal and oesophago-gastric cancers in two areas of England [i.e. London Cancer (London, UK), which covers north-central London, north-east London and west Essex, and Greater Manchester Cancer (Manchester, UK), which covers Greater Manchester]. Design: Stakeholder preferences for centralising specialist cancer surgery were analysed using a discrete choice experiment, surveying cancer patients (n = 206), health-care professionals (n = 111) and the general public (n = 127). Quantitative analysis of impact on care, outcomes and cost-effectiveness used a controlled before-and-after design. Qualitative analysis of implementation and outcomes of change used a multisite case study design, analysing documents (n = 873), interviews (n = 212) and non-participant observations (n = 182). To understand how lessons apply in other contexts, we conducted an online workshop with stakeholders from a range of settings. A theory-based framework was used to synthesise these approaches. Results: Stakeholder preferences – patients, health-care professionals and the public had similar preferences, prioritising reduced risk of complications and death, and better access to specialist teams. Travel time was considered least important. Quantitative analysis (impact of change) – only London Cancer’s centralisations happened soon enough for analysis. These changes were associated with fewer surgeons doing more operations and reduced length of stay [prostate –0.44 (95% confidence interval –0.55 to –0.34) days; bladder –0.563 (95% confidence interval –4.30 to –0.83) days; renal –1.20 (95% confidence interval –1.57 to –0.82) days]. The centralisation meant that renal patients had an increased probability of receiving non-invasive surgery (0.05, 95% confidence interval 0.02 to 0.08). We found no evidence of impact on mortality or re-admissions, possibly because risk was already low pre-centralisation. London Cancer’s prostate, oesophago-gastric and bladder centralisations had medium probabilities (79%, 62% and 49%, respectively) of being cost-effective, and centralising renal services was not cost-effective (12% probability), at the £30,000/quality-adjusted life-year threshold. Qualitative analysis, implementation and outcomes – London Cancer’s provider-led network overcame local resistance by distributing leadership throughout the system. Important facilitators included consistent clinical leadership and transparent governance processes. Greater Manchester Cancer’s change leaders learned from history to deliver the oesophago-gastric centralisation. Greater Manchester Cancer’s urology centralisations were not implemented because of local concerns about the service model and local clinician disengagement. London Cancer’s network continued to develop post implementation. Consistent clinical leadership helped to build shared priorities and collaboration. Information technology difficulties had implications for interorganisational communication and how reliably data follow the patient. London Cancer’s bidding processes and hierarchical service model meant that staff reported feelings of loss and a perceived ‘us and them’ culture. Workshop – our findings resonated with workshop attendees, highlighting issues about change leadership, stakeholder collaboration and implications for future change and evaluation. Limitations: The discrete choice experiment used a convenience sample, limiting generalisability. Greater Manchester Cancer implementation delays meant that we could study the impact of only London Cancer changes. We could not analyse patient experience, quality of life or functional outcomes that were important to patients (e.g. continence). Future research: Future research may focus on impact of change on care options offered, patient experience, functional outcomes and long-term sustainability. Studying other approaches to achieving high-volume services would be valuable. Study registration: ational Institute for Health and Care Research (NIHR) Clinical Research Network Portfolio reference 19761

    Implementing major system change in specialist cancer surgery: The role of provider networks

    Get PDF
    Objective: Major system change (MSC) has multiple, sometimes conflicting, goals and involves implementing change across a number of organizations. This study sought to develop new understanding of how the role that networks can play in implementing MSC, using the case of centralization of specialist cancer surgery in London, UK. Methods: The study was based on a framework drawn from literature on networks and MSC. We analysed 100 documents, conducted 134 h of observations during relevant meetings and 81 interviews with stakeholders involved in the centralization. We analysed the data using thematic analysis. Results: MSC in specialist cancer services was a contested process, which required constancy in network leadership over several years, and its horizontal and vertical distribution across the network. A core central team composed of network leaders, managers and clinical/manager hybrid roles was tasked with implementing the changes. This team developed different forms of engagement with provider organizations and other stakeholders. Some actors across the network, including clinicians and patients, questioned the rationale for the changes, the clinical evidence used to support the case for change, and the ways in which the changes were implemented. Conclusions: Our study provides new understanding of MSC by discussing the strategies used by a provider network to facilitate complex changes in a health care context in the absence of a system-wide authority

    How to Cost the Implementation of Major System Change for Economic Evaluations: Case Study Using Reconfigurations of Specialist Cancer Surgery in Part of London, England.

    Get PDF
    BACKGROUND: Studies have been published regarding the impact of major system change (MSC) on care quality and outcomes, but few evaluate implementation costs or include them in cost-effectiveness analysis (CEA). This is despite large potential costs of MSC: change planning, purchasing or repurposing assets, and staff time. Implementation costs can influence implementation decisions. We describe our framework and principles for costing MSC implementation and illustrate them using a case study. METHODS: We outlined MSC implementation stages and identified components, using a framework conceived during our work on MSC in stroke services. We present a case study of MSC of specialist surgery services for prostate, bladder, renal and oesophagogastric cancers, focusing on North Central and North East London and West Essex. Health economists collaborated with qualitative researchers, clinicians and managers, identifying key reconfiguration stages and expenditures. Data sources (n = approximately 100) included meeting minutes, interviews, and business cases. National Health Service (NHS) finance and service managers and clinicians were consulted. Using bottom-up costing, items were identified, and unit costs based on salaries, asset costs and consultancy fees assigned. Itemised costs were adjusted and summed. RESULTS: Cost components included options appraisal, bidding process, external review; stakeholder engagement events; planning/monitoring boards/meetings; and making the change: new assets, facilities, posts. Other considerations included hospital tariff changes; costs to patients; patient population; and lifetime of changes. Using the framework facilitated data identification and collection. The total adjusted implementation cost was estimated at £7.2 million, broken down as replacing robots (£4.0 million), consultancy fees (£1.9 million), staff time costs (£1.1 million) and other costs (£0.2 million). CONCLUSIONS: These principles can be used by funders, service providers and commissioners planning MSC and researchers evaluating MSC. Health economists should be involved early, alongside qualitative and health-service colleagues, as retrospective capture risks information loss. These analyses are challenging; many cost factors are difficult to identify, access and measure, and assumptions regarding lifetime of the changes are important. Including implementation costs in CEA might make MSC appear less cost effective, influencing future decisions. Future work will incorporate this implementation cost into the full CEAs of the London Cancer MSC. TRIAL REGISTRATION: Not applicable
    corecore