3,865 research outputs found

    Deuteron Compton scattering and electromagnetic polarizabilities of the nucleon

    Get PDF
    Differential cross section of deuteron Compton scattering has been calculated using the Bonn NN-potential, a consistent set of meson-exchange currents and seagulls, and lowest- and higher-order electromagnetic polarizabilities of the nucleon. Estimates of the polarizabilities of the neutron are obtained from recent experimental data.Comment: 3 pages, 2 figures, Latex2e with ps fonts. Talk at the FB16 Conference, Taipei, March 6-10, 2000. To appear in proceeding

    Structure of the σ\sigma-meson and diamagnetism of the nucleon

    Full text link
    The structure of the σ\sigma meson and the diamagnetism of the nucleon are shown to be topics which are closely related to each other. Arguments are found that the σ\sigma meson couples to two photons via its non-strange qqˉq\bar{q} structure component. This ansatz leads to a quantitative explanation of the tt-channel component of the difference of electromagnetic polarizabilities, (\alpha-\beta)^t,containingthediamagnetismofthenucleon.Thepredictionis, containing the diamagnetism of the nucleon. The prediction is (\alpha-\beta)^t_{p,n}=(5\alpha_e g_{\pi MM})/(6\pi^2 m^2_\sigma f_\pi)=15.3inunitsof in units of 10^{-4}{\rm fm}^3tobecomparedwiththeexperimentalvalue to be compared with the experimental value (\alpha-\beta)^t_p=15.1\pm 1.3fortheprotonand for the proton and (\alpha-\beta)^t_n=14.8\pm 2.7fortheneutron.Theequivalentapproachtoexploitthe for the neutron. The equivalent approach to exploit the \pi\pistructurecomponentofthe structure component of the \sigmamesonviatheBEFTsumruleleadsto meson via the BEFT sum rule leads to (\alpha-\beta)^t_{p,n}=14\pm 2$, what also is in agreement with the experimental results.Comment: Contribution made by Martin Schumacher to the International Workshop on the Physics of Excited Baryons, 12 - 15 Oct. 2005, Tallahasse, Florida US

    Compton Scattering from the Deuteron and Extracted Neutron Polarizabilities

    Full text link
    Differential cross sections for Compton scattering from the deuteron were measured at MAX-lab for incident photon energies of 55 MeV and 66 MeV at nominal laboratory angles of 45∘45^\circ, 125∘125^\circ, and 135∘135^\circ. Tagged photons were scattered from liquid deuterium and detected in three NaI spectrometers. By comparing the data with theoretical calculations in the framework of a one-boson-exchange potential model, the sum and difference of the isospin-averaged nucleon polarizabilities, αN+βN=17.4±3.7\alpha_N + \beta_N = 17.4 \pm 3.7 and αN−βN=6.4±2.4\alpha_N - \beta_N = 6.4 \pm 2.4 (in units of 10−410^{-4} fm3^3), have been determined. By combining the latter with the global-averaged value for αp−βp\alpha_p - \beta_p and using the predictions of the Baldin sum rule for the sum of the nucleon polarizabilities, we have obtained values for the neutron electric and magnetic polarizabilities of αn=8.8±2.4\alpha_n= 8.8 \pm 2.4(total) ±3.0\pm 3.0(model) and βn=6.5∓2.4\beta_n = 6.5 \mp 2.4(total) ∓3.0\mp 3.0(model), respectively.Comment: 4 pages, 2 figures, revtex. The text is substantially revised. The cross sections are slightly different due to improvements in the analysi

    Deuteron Compton Scattering in Effective Field Theory: Spin-Dependent Cross Sections and Asymmetries

    Full text link
    Polarized Compton scattering on the deuteron is studied in nuclear effective field theory. A set of tensor structures is introduced to define 12 independent Compton amplitudes. The scalar and vector amplitudes are calculated up to O((Q/Λ)2){\cal O}((Q/\Lambda)^2) in low-energy power counting. Significant contribution to the vector amplitudes is found to come from the spin-orbit type of relativistic corrections. A double-helicity dependent cross section Δ1σ=(σ+1−1−σ+1+1)/2\Delta_1 \sigma = (\sigma_{+1-1}-\sigma_{+1+1})/2 is calculated to the same order, and the effect of the nucleon isoscalar spin-dependent polarizabilities is found to be smaller than the effect of isoscalar spin-independent ones. Contributions of spin-independent polarizabilities are investigated in various asymmetries, one of which has as large as 12 (26) percent effect at the center-of-mass photon energy 30 (50) MeV.Comment: 22 pages, 8 figures included, replaced with the version submitted to PR
    • …
    corecore