18 research outputs found

    Electron Spin Dynamics in Semiconductors without Inversion Symmetry

    Full text link
    We present a microscopic analysis of electron spin dynamics in the presence of an external magnetic field for non-centrosymmetric semiconductors in which the D'yakonov-Perel' spin-orbit interaction is the dominant spin relaxation mechanism. We implement a fully microscopic two-step calculation, in which the relaxation of orbital motion due to electron-bath coupling is the first step and spin relaxation due to spin-orbit coupling is the second step. On this basis, we derive a set of Bloch equations for spin with the relaxation times T_1 and T_2 obtained microscopically. We show that in bulk semiconductors without magnetic field, T_1 = T_2, whereas for a quantum well with a magnetic field applied along the growth direction T_1 = T_2/2 for any magnetic field strength.Comment: to appear in Proceedings of Mesoscopic Superconductivity and Spintronics (MS+S2002

    Kinetics of proton pumping in cytochrome c oxidase

    Full text link
    We propose a simple model of cytochrome c oxidase, including four redox centers and four protonable sites, to study the time evolution of electrostatically coupled electron and proton transfers initiated by the injection of a single electron into the enzyme. We derive a system of master equations for electron and proton state probabilities and show that an efficient pumping of protons across the membrane can be obtained for a reasonable set of parameters. All four experimentally observed kinetic phases appear naturally from our model. We also calculate the dependence of the pumping efficiency on the transmembrane voltage at different temperatures and discuss a possible mechanism of the redox-driven proton translocation.Comment: 32 pages, 4 figures; references added. Minor changes in the Acknowledgements sectio

    Electron Spin Relaxation in a Semiconductor Quantum Well

    Full text link
    A fully microscopic theory of electron spin relaxation by the D'yakonov-Perel' type spin-orbit coupling is developed for a semiconductor quantum well with a magnetic field applied in the growth direction of the well. We derive the Bloch equations for an electron spin in the well and define microscopic expressions for the spin relaxation times. The dependencies of the electron spin relaxation rate on the lowest quantum well subband energy, magnetic field and temperature are analyzed.Comment: Revised version as will appear in Physical Review

    Negative high-frequency differential conductivity in semiconductor superlattices

    Full text link
    We examine the high-frequency differential conductivity response properties of semiconductor superlattices having various miniband dispersion laws. Our analysis shows that the anharmonicity of Bloch oscillations (beyond tight-binding approximation) leads to the occurrence of negative high-frequency differential conductivity at frequency multiples of the Bloch frequency. This effect can arise even in regions of positive static differential conductivity. The influence of strong electron scattering by optic phonons is analyzed. We propose an optimal superlattice miniband dispersion law to achieve high-frequency field amplification

    Self-induced and induced transparencies of two-dimensional and three- dimensional superlattices

    Full text link
    The phenomenon of transparency in two-dimensional and three-dimensional superlattices is analyzed on the basis of the Boltzmann equation with a collision term encompassing three distinct scattering mechanisms (elastic, inelastic and electron-electron) in terms of three corresponding distinct relaxation times. On this basis, we show that electron heating in the plane perpendicular to the current direction drastically changes the conditions for the occurrence of self-induced transparency in the superlattice. In particular, it leads to an additional modulation of the current amplitudes excited by an applied biharmonic electric field with harmonic components polarized in orthogonal directions. Furthermore, we show that self-induced transparency and dynamic localization are different phenomena with different physical origins, displaced in time from each other, and, in general, they arise at different electric fields.Comment: to appear in Physical Review
    corecore