5,286 research outputs found
Frustration and glassiness in spin models with cavity-mediated interactions
We show that the effective spin-spin interaction between three-level atoms
confined in a multimode optical cavity is long-ranged and sign-changing, like
the RKKY interaction; therefore, ensembles of such atoms subject to frozen-in
positional randomness can realize spin systems having disordered and frustrated
interactions. We argue that, whenever the atoms couple to sufficiently many
cavity modes, the cavity-mediated interactions give rise to a spin glass. In
addition, we show that the quantum dynamics of cavity-confined spin systems is
that of a Bose-Hubbard model with strongly disordered hopping but no on-site
disorder; this model exhibits a random-singlet glass phase, absent in
conventional optical-lattice realizations. We briefly discuss experimental
signatures of the realizable phases.Comment: 5 pages, 2 figure
Meissner-like effect for synthetic gauge field in multimode cavity QED
Previous realizations of synthetic gauge fields for ultracold atoms do not allow the spatial profile of the field to evolve freely. We propose a scheme which overcomes this restriction by using the light in a multimode cavity, in conjunction with Raman coupling, to realize an artificial magnetic field which acts on a Bose-Einstein condensate of neutral atoms. We describe the evolution of such a system, and present the results of numerical simulations which show dynamical coupling between the effective field and the matter on which it acts. Crucially, the freedom of the spatial profile of the field is sufficient to realize a close analogue of the Meissner effect, where the magnetic field is expelled from the superfluid. This back-action of the atoms on the synthetic field distinguishes the Meissner-like effect described here from the Hess-Fairbank suppression of rotation in a neutral superfluid observed elsewhere.PostprintPeer reviewe
The RANLUX generator: resonances in a random walk test
Using a recently proposed directed random walk test, we systematically
investigate the popular random number generator RANLUX developed by Luescher
and implemented by James. We confirm the good quality of this generator with
the recommended luxury level. At a smaller luxury level (for instance equal to
1) resonances are observed in the random walk test. We also find that the
lagged Fibonacci and Subtract-with-Carry recipes exhibit similar failures in
the random walk test. A revised analysis of the corresponding dynamical systems
leads to the observation of resonances in the eigenvalues of Jacobi matrix.Comment: 18 pages with 14 figures, Essential addings in the Abstract onl
Deuteron Magnetic and Quadrupole Moments with a Poincar\'e Covariant Current Operator in the Front-Form Dynamics
The deuteron magnetic and quadrupole moments are unambiguosly determined
within the front-form Hamiltonian dynamics, by using a new current operator
which fulfills Poincar\'e, parity and time reversal covariance, together with
hermiticity and the continuity equation. For both quantities the usual
disagreement between theoretical and experimental results is largely removed.Comment: To appear in Phys. Rev. Let
Quantum Theory and Galois Fields
We discuss the motivation and main results of a quantum theory over a Galois
field (GFQT). The goal of the paper is to describe main ideas of GFQT in a
simplest possible way and to give clear and simple arguments that GFQT is a
more natural quantum theory than the standard one. The paper has been prepared
as a presentation to the ICSSUR' 2005 conference (Besancon, France, May 2-6,
2005).Comment: Latex, 24 pages, 1 figur
Could Only Fermions Be Elementary?
In standard Poincare and anti de Sitter SO(2,3) invariant theories,
antiparticles are related to negative energy solutions of covariant equations
while independent positive energy unitary irreducible representations (UIRs) of
the symmetry group are used for describing both a particle and its
antiparticle. Such an approach cannot be applied in de Sitter SO(1,4) invariant
theory. We argue that it would be more natural to require that (*) one UIR
should describe a particle and its antiparticle simultaneously. This would
automatically explain the existence of antiparticles and show that a particle
and its antiparticle are different states of the same object. If (*) is adopted
then among the above groups only the SO(1,4) one can be a candidate for
constructing elementary particle theory. It is shown that UIRs of the SO(1,4)
group can be interpreted in the framework of (*) and cannot be interpreted in
the standard way. By quantizing such UIRs and requiring that the energy should
be positive in the Poincare approximation, we conclude that i) elementary
particles can be only fermions. It is also shown that ii) C invariance is not
exact even in the free massive theory and iii) elementary particles cannot be
neutral. This gives a natural explanation of the fact that all observed neutral
states are bosons.Comment: The paper is considerably revised and the following results are
added: in the SO(1,4) invariant theory i) the C invariance is not exact even
for free massive particles; ii) neutral particles cannot be elementar
Retractions
To what extent does “false science” impact the rate and direction of scientific change? We examine the impact of over 1,100 scientific retractions on the citation trajectories of articles that are related to retracted papers in intellectual space but were published prior to the retraction event. Following retraction and relative to carefully selected controls, related articles experience a lasting five to ten percent decline in the rate of citations received. This penalty is more severe when the retracted article involves fraud or misconduct, rather than honest mistakes. In addition, we find that the arrival rate of new articles and funding ows into these fields decrease after a retraction.National Science Foundation (U.S.) (SciSIP Program Award SBE-0738142)National Science Foundation (U.S.) (SciSIP Program Award SBE-0738394
Backward Evolving Quantum States
The basic concept of the two-state vector formalism, which is the time
symmetric approach to quantum mechanics, is the backward evolving quantum
state. However, due to the time asymmetry of the memory's arrow of time, the
possible ways to manipulate a backward evolving quantum state differ from those
for a standard, forward evolving quantum state. The similarities and the
differences between forward and backward evolving quantum states regarding the
no-cloning theorem, nonlocal measurements, and teleportation are discussed. The
results are relevant not only in the framework of the two-state vector
formalism, but also in the framework of retrodictive quantum theory.Comment: Contribution to the J.Phys. A special issue in honor of GianCarlo
Ghirard
Space-like and time-like pion electromagnetic form factor and Fock state components within the Light-Front dynamics
The simultaneous investigation of the pion electromagnetic form factor in the
space- and time-like regions within a light-front model allows one to address
the issue of non-valence components of the pion and photon wave functions. Our
relativistic approach is based on a microscopic vector meson dominance (VMD)
model for the dressed vertex where a photon decays in a quark-antiquark pair,
and on a simple parametrization for the emission or absorption of a pion by a
quark. The results show an excellent agreement in the space like region up to
-10 , while in time-like region the model produces reasonable
results up to 10 .Comment: 74 pages, 11 figures, use revtex
- …