1,211 research outputs found
Scintillating fibres
This review first describes the basic working principles of scintillating fibres together with their most common readout techniques. It concentrates on plastic fibres, since they are better suited for application in High Energy Physics. The following section reviews fibre trackers and lead/scintillating calorimeters. Both detector devices are compared with competing techniques based on other media. The review continues with dose rates at the LHC-collider and discusses the radiation damage on scintillating fibres. The conclusion covers the progress achieved with the fibre technique and presents an outlook on future developments
Novel mechanism of C/EBPbeta (NF-M) transcriptional control: activation through derepression
Phosphorylation of transcription factors is regarded as a major mechanism to control their activity in regulation of gene expression. C/EBP beta is a transcription factor that becomes activated after phosphorylation to induce genes involved in inflammation, acute-phase response, cytokine expression, cell growth, and differentiation. The chicken homolog NF-M collaborates with Myb and various kinase oncogenes in normal myeloid differentiation as well as in the leukemic transformation of myelomonocytic cells. Here, we examined the structure of NF-M and its mechanism of activation. We show that NF-M is a repressed transcription factor with concealed activation potential. Derepressed NF-M exhibits enhanced transcriptional efficacy in reporter assays. More importantly, NF-M activates resident chromatin-embedded, myelomonocyte-specific target genes, even in heterologous cell types such as fibroblasts or erythroblasts. We identified two regions within NF-M that act to repress trans-activation. Repression is abolished by deletion of these regions, activation of signal transduction kinases including v-erbB, polyoma middle T, ras and mil/raf, or point mutation of a critical phosphorylation site for MAP kinases. We provide evidence that phosphorylation plays a unique role to derepress rather than to enhance the trans-activation domain as a novel mechanism to regulate gene expression by NF-M/C/EBP beta
Postcard: #2 Waconda Great Spirit Springs, Kansas On Crest of Hill Rear View of Buildings
This black and white photographic postcard features a naturally circular hole of spring water in the ground with a fence around it. The Sanitarium and other buildings are in the background. There is hand written text at the bottom left corner of the card. There is handwriting on the back of the card.https://scholars.fhsu.edu/tj_postcards/1487/thumbnail.jp
Immigration and the Elderly: Foreign-Born Workers in Long-Term Care
Aging populations and the growing need to provide long-term care to the elderly are among the leading demographic, political, and social challenges facing industrialized countries like the United States. As a result, immigrants will continue to play a significant role in the growth of the U.S. labor force in general and the direct-care workforce in particular. It is in the best interests of long-term care clients, providers, and workers if governments and private donors foster training and placement programs rather than leaving the future of the direct-care industry to chance
Myb and NF-M: combinatorial activators of myeloid genes in heterologous cell types
The c-Myb transcription factor regulates the differentiation of immature erythroid, lymphoid, and myeloid cells, although only the latter cells become transformed by the v-myb oncogene. These are also the only cells that express the Myb-regulated gene mim-1, suggesting that Myb requires tissue-specific, cooperating factors to activate such genes. Here, we investigated the tissue-specific regulation of the mim-1 promoter and found that it not only contains binding sites for Myb but also for NF-M, a myeloid-specific transcription factor that probably corresponds to mammalian C/EBP beta. Both types of binding sites were found to be required for full activity of the promoter. Remarkably, ectopic coexpression of Myb and NF-M proteins in erythroid cells or fibroblasts was sufficient to induce endogenous markers of myeloid differentiation, like the mim-1 and lysozyme genes. Our results indicate that c-Myb and NF-M proteins act as a bipartite, combinatorial signal that regulates the expression of myeloid-specific genes, even in heterologous cell types
Histone H3 tail positioning and acetylation by the c-Myb but not the v-Myb DNA-binding SANT domain
The c-Myb transcription factor coordinates proliferation and differentiation of hematopoietic precursor cells. Myb has three consecutive N-terminal SANT-type repeat domains (R1, R2, R3), two of which (R2, R3) form the DNA-binding domain (DBD). Three amino acid substitutions in R2 alter the way Myb regulates genes and determine the leukemogenicity of the retrovirally transduced v-Myb oncogene. The molecular mechanism of how these mutations unleash the leukemogenic potential of Myb is unknown. Here we demonstrate that the c-Myb-DBD binds to the N-terminal histone tails of H3 and H3.3. C-Myb binding facilitates histone tail acetylation, which is mandatory during activation of prevalent differentiation genes in conjunction with CCAAT enhancer-binding proteins (C/EBP). Leukemogenic mutations in v-Myb eliminate the interaction with H3 and acetylation of H3 tails and abolish activation of endogenous differentiation genes. In primary v-myb-transformed myeloblasts, pharmacologic enhancement of H3 acetylation restored activation of differentiation genes and induced cell differentiation. Our data link a novel chromatin function of c-Myb with lineage-specific expression of differentiation genes and relate the loss of this function with the leukemic conversion of Myb
Photoelectron backscattering from silicon anodes of hybrid photodetector tubes
The impact of photoelectron backscattering on spectral distributions measured with hybrid photodetector tubes has been calculated. The calculations are based on the backscattering coefficient mu , the average number of photoelectrons N/sub phel/ emitted from the photocathode, and on the distribution of the fractional photoelectron energy q absorbed in silicon during the backscattering process. We obtained the following results: the average number of absorbed (measured) photoelectrons N/sub meas/ in the silicon anode amounts to ~88% of the incident N/sub phel/. Photoelectron- and gamma-absorption peaks are broadened by a factor 1.043 due to backscattering. As an example, for photomultiplier tubes, this broadening can amount to an average factor of 1.18 due to statistic and gain fluctuations on the dynode chain. (15 refs)
Hybrid photon detectors
Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array tubes with finely segmented anodes for photon-sensitive imaging devices. Some of the hybrid photon detectors’ applications and achievements in radiation detection are discussed and compared with competing devices such as photomultipliers, image intensifiers, photodiodes, silicon drift chambers, charge coupled devices, visible light photon counters, and photographic emulsions
Crosstalk between C/EBPbeta phosphorylation, arginine methylation, and SWI/SNF/Mediator implies an indexing transcription factor code
Cellular signalling cascades regulate the activity of transcription factors that convert extracellular information into gene regulation. C/EBPbeta is a ras/MAPkinase signal-sensitive transcription factor that regulates genes involved in metabolism, proliferation, differentiation, immunity, senescence, and tumourigenesis. The protein arginine methyltransferase 4 PRMT4/CARM1 interacts with C/EBPbeta and dimethylates a conserved arginine residue (R3) in the C/EBPbeta N-terminal transactivation domain, as identified by mass spectrometry of cell-derived C/EBPbeta. Phosphorylation of the C/EBPbeta regulatory domain by ras/MAPkinase signalling abrogates the interaction between C/EBPbeta and PRMT4/CARM1. Differential proteomic screening, protein interaction studies, and mutational analysis revealed that methylation of R3 constraines interaction with SWI/SNF and Mediator complexes. Mutation of the R3 methylation site alters endogenous myeloid gene expression and adipogenic differentiation. Thus, phosphorylation of the transcription factor C/EBPbeta couples ras signalling to arginine methylation and regulates the interaction of C/EBPbeta with epigenetic gene regulatory protein complexes during cell differentiation
Functional interaction of CCAAT/enhancer-binding-protein-α basic region mutants with E2F transcription factors and DNA
The transcription factor CCAAT/enhancer-binding protein {alpha} (C/EBP{alpha}) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBP{alpha} are associated with acute myeloid leukemia. A widely used murine transforming C/EBP{alpha} basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBP{alpha}-E2F-DNA interactions. Both, C/EBP{alpha} I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBP{alpha} R297A mutation destabilized DNA binding, whereas the C/EBP{alpha} I294A mutation enhanced binding to DNA. The C/EBP{alpha} R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBP{alpha} I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBP{alpha}
- …