22 research outputs found
Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-kappa B-mediated inflammation
Activation of inflammatory gene expression is regulated, among other factors, by post-translational modifications of histone proteins. The most investigated type of histone modifications is lysine acetylations. Histone deacetylases (HDACs) remove acetylations from lysines, thereby influencing (inflammatory) gene expression. Intriguingly, apart from histones, HDACs also target non-histone proteins. The nuclear factor kappa B (NF-kappa B) pathway is an important regulator in the expression of numerous inflammatory genes, and acetylation plays a crucial role in regulating its responses. Several studies have shed more light on the role of HDAC 1-3 in inflammation with a particular pro-inflammatory role for HDAC 3. Nevertheless, the HDAC-NF-kappa B interactions in inflammatory signalling have not been fully understood. An important challenge in targeting the regulatory role of HDACs in the NF-kappa B pathway is the development of highly potent small molecules that selectively target HDAC iso-enzymes. This review focuses on the role of HDAC 3 in (NF-kappa B-mediated) inflammation and NF-kappa B lysine acetylation. In addition, we address the application of frequently used small molecule HDAC inhibitors as an approach to attenuate inflammatory responses, and their potential as novel therapeutics. Finally, recent progress and future directions in medicinal chemistry efforts aimed at HDAC 3-selective inhibitors are discussed.</p
HDAC 3-selective inhibitor RGFP966 demonstrates anti-inflammatory properties in RAW 264.7 macrophages and mouse precision-cut lung slices by attenuating NF-κB p65 transcriptional activity
AbstractThe increasing number of patients suffering from chronic obstructive pulmonary disease (COPD) represents a major and increasing health problem. Therefore, novel therapeutic approaches are needed. Class I HDACs 1, 2 and 3 play key roles in the regulation of inflammatory gene expression with a particular pro-inflammatory role for HDAC 3. HDAC 3 has been reported to be an important player in inflammation by deacetylating NF-κB p65, which has been implicated in the pathology of COPD. Here, we applied the pharmacological HDAC 3-selective inhibitor RGFP966, which attenuated pro-inflammatory gene expression in models for inflammatory lung diseases. Consistent with this, a robust decrease of the transcriptional activity of NF-κB p65 was observed. HDAC 3 inhibition affected neither the acetylation status of NF-κB p65 nor histone H3 or histone H4. This indicates that HDAC 3 inhibition does not inhibit NF-κB p65 transcriptional activity by affecting its deacetylation but rather by inhibiting enzymatic activity of HDAC 3. Taken together, our findings indicate that pharmacological HDAC 3-selective inhibition by inhibitors such as RGFP966 may provide a novel and effective approach toward development of therapeutics for inflammatory lung diseases
HDAC1-3 inhibitor MS-275 enhances IL10 expression in RAW264.7 macrophages and reduces cigarette smoke-induced airway inflammation in mice
Chronic obstructive pulmonary disease (COPD) constitutes a major health burden. Studying underlying molecular mechanisms could lead to new therapeutic targets. Macrophages are orchestrators of COPD, by releasing pro-inflammatory cytokines. This process relies on transcription factors such as NF-κB, among others. NF-κB is regulated by lysine acetylation; a post-translational modification installed by histone acetyltransferases and removed by histone deacetylases (HDACs). We hypothesized that small molecule HDAC inhibitors (HDACi) targeting class I HDACs members that can regulate NF-κB could attenuate inflammatory responses in COPD via modulation of the NF-κB signaling output. MS-275 is an isoform-selective inhibitor of HDAC1-3. In precision-cut lung slices and RAW264.7 macrophages, MS-275 upregulated the expression of both pro- and anti-inflammatory genes, implying mixed effects. Interestingly, anti-inflammatory IL10 expression was upregulated in these model systems. In the macrophages, this was associated with increased NF-κB activity, acetylation, nuclear translocation, and binding to the IL10 promoter. Importantly, in an in vivo model of cigarette smoke-exposed C57Bl/6 mice, MS-275 robustly attenuated inflammatory expression of KC and neutrophil influx in the lungs. This study highlights for the first time the potential of isoform-selective HDACi for the treatment of inflammatory lung diseases like COPD
Chemical epigenetics to assess the role of HDAC1-3 inhibition in macrophage pro-inflammatory gene expression
Histone deacetylases (HDACs) have been used as pharmacological targets for the treatment of various diseases. Some non-selective HDAC inhibitors (HDACi) have been clinically-used as therapeutic agents for treatment of hematological cancers but their cytotoxic side effects are an important downside. The discovery of more selective inhibitors has certified the involvement of individual HDACs in pathological processes but the elucidation of the role of specific family members in inflammatory responses still remains a challenge. Here, we report the development of closely related, structural analogues of the clinically-used HDACi Entinostat via a chemical epigenetic approach. Three compounds were designed and synthesized in which the cap moiety of Entinostat was replaced by an azobenzene group that is either para, meta or ortho substituted. The compounds were then evaluated for selectivity towards HDACs 1-3 and their effect on pro-inflammatory gene expression in macrophages. One analogue, compound 4, lacked selectivity and demonstrated inhibition of NF-kappa B reporter gene activity and pro-inflammatory gene expression in RAW264.7 macrophages, thus indicating that there is a delicate balance between the selectivity of HDACi over specific family members and their pro-or anti-inflammatory effects
Design of a novel thiophene inhibitor of 15-lipoxygenase-1 with both anti-inflammatory and neuroprotective properties
The enzyme 15-lipoxygenase-1 (15-LOX-1) plays a dual role in diseases with an inflammatory component. On one hand 15-LOX-1 plays a role in pro-inflammatory gene expression and on the other hand it has been shown to be involved in central nervous system (CNS) disorders by its ability to mediate oxidative stress and damage of mitochondrial membranes under hypoxic conditions. In order to further explore applications in the CNS, novel 15-LOX-1 inhibitors with favorable physicochemical properties need to be developed. Here, we present Substitution Oriented Screening (SOS) in combination with Multi Component Chemistry (MCR) as an effective strategy to identify a diversely substituted small heterocyclic inhibitors for 15-LOX-1, denoted ThioLox, with physicochemical properties superior to previously identified inhibitors. Ex vivo biological evaluation in precision-cut lung slices (PCLS) showed inhibition of pro-inflammatory gene expression and in vitro studies on neuronal HT-22 cells showed a strong protection against glutamate toxicity for this 15-LOX-1 inhibitor. This provides a novel approach to identify novel small with favorable physicochemical properties for exploring 15-LOX-1 as a drug target in inflammatory diseases and neurodegeneration
Targeted siRNA Delivery to Diseased Microvascular Endothelial Cells-Cellular and Molecular Concepts
Increased insight in the role of endothelial cells in the pathophysiology of cancer, inflammatory and cardiovascular diseases, has drawn great interest in pharmacological interventions aiming at the endothelium in diseased sites. Their location in the body makes them suitable targets for therapeutic approaches based on targeted drug delivery. Functional heterogeneity of the microvascular bed in normal organ homeostasis has been appreciated for a long time, and more recent studies have revealed heterogeneity in endothelial reactivity to inflammatory stimuli as well. Upon stimulation, each organ displays a vascular bed specific pattern of cell adhesion molecules providing challenging opportunities to deliver drugs or small RNAs to organ specific (micro) vascular endothelial subsets. In this review we introduce general concepts of endothelial heterogeneity in relation to disease state and its consequences for targeted therapeutic interventions. Furthermore, we will describe novel approaches to interfere with endothelial cell engagement in disease with a main focus on siRNA therapeutics and currently used nonviral lipid and polymer-based siRNA delivery systems. The last part of this review addresses some technical issues that are essential in proving the concept of target mRNA knock down in a vascular bed specific manner, and the further development of effective endothelial cell specific drug delivery devices. (C) 2011 IUBMB IUBMB Life, 63(8): 648-658, 201
Rational Development of a Potent 15-Lipoxygenase-1 Inhibitor with in Vitro and ex Vivo Anti-inflammatory Properties
Human 15-lipoxygenase-1 (h-1S-LOX-1) is a mammalian lipoxygenase and plays an important role in several inflammatory lung diseases such as asthma, COPD, and chronic bronchitis. Novel potent inhibitors of h-1S-LOX-1 are required to explore the role of this enzyme further and to enable drug discovery efforts. In this study, we applied an approach in which we screened a fragment collection that is focused on a diverse substitution pattern of nitrogen-containing heterocycles such as indoles, quinolones, pyrazoles, and others. We denoted this approach substitution-oriented fragment screening (SOS) because it focuses on the identification of novel substitution patterns rather than on novel scaffolds. This approach enabled the identification of hits with good potency and clear structure activity relationships (SAR) for h-l-S-LOX-1 inhibition. Molecular modeling enabled the rationalization of the observed SAR and supported structure-based design for further optimization to obtain inhibitor 14d that binds with a Ki of 36 nM to the enzyme. In vitro and ex vivo biological evaluations of our best inhibitor demonstrate a significant increase of interleukin-10 (1L-10) gene expression, which indicates its anti-inflammatory properties
A 6-alkylsalicylate histone acetyltransferase inhibitor inhibits histone acetylation and pro-inflammatory gene expression in murine precision-cut lung slices
Lysine acetylations are post-translational modifications of cellular proteins, that are crucial in the regulation of many cellular processes. Lysine acetylations on histone proteins are part of the epigenetic code regulating gene transcription and are installed by histone acetyltransferases. Observations that inflammatory lung diseases, such as asthma and chronic obstructive pulmonary disease, are characterized by increased histone acetyltransferase activity indicate that development of small molecule inhibitors for these enzymes might be a valuable approach towards new therapies for these diseases. The 6-alkylsalicylate MG149 is a candidate to explore this hypothesis because it has been demonstrated to inhibit the MYST type histone acetyltransferases. In this study, we determined the Ki value for inhibition of the MYST type histone acetyltransferase KAT8 by MG149 to be 39 ± 7.7 μM. Upon investigating whether the inhibition of histone acetyltransferases by MG149 correlates with inhibition of histone acetylation in murine precision-cut lung slices, inhibition of acetylation was observed using an LC-MS/MS based assay on histone H4 res 4-17, which contains the target lysine of KAT8. Following up on this, upon treatment with MG149, reduced pro-inflammatory gene expression was observed in lipopolysaccharide and interferon gamma stimulated murine precision-cut lung slices. Based on this, we propose that 6-alkylsalicylates such as MG149 have potential for development towards applications in the treatment of inflammatory lung diseases
Reassessment of the role of Mut S homolog 5 in Ig class switch recombination shows lack of involvement in cis- and trans-switching
When B cells are activated after immunization or infection, they exchange the gene encoding the Ig H chain C region by class switch recombination (CSR). CSR generally occurs by an intrachromosomal deletional recombination within switch (S) region sequences. However, approximately 10% of CSR events occur between chromosome homologs (trans- or interallele CSR), suggesting that the homologous chromosomes are aligned during CSR. Because the Mut S homolog 4 (Msh4) and Msh5 bind to Holliday junctions and are required for homologous recombination during meiosis in germ cells, we hypothesized these proteins might be involved in trans-chromosomal CSR (trans-CSR). Indeed, Msh4-Msh5 has recently been suggested to have a role in CSR. However, we find a large variety of alternative splice variants of Msh5 mRNA in splenic B cells rather than the full-length form found in testis. Most of these mRNAs are unlikely to be stable, suggesting that Msh5 might not be functional. Furthermore, we find that msh5 nullizygous B cells undergo CSR normally, have unaltered levels of trans-CSR, normal levels of DNA breaks in the Smu region, and normal S-S junctions. We also show that the S-S junctions from cis- and trans-CSR events have similar lengths of junctional microhomology, suggesting trans-CSR occurs by nonhomologous end joining as does intrachromosome (cis)-CSR. From these data, we conclude that Msh5 does not participate in CS