31 research outputs found

    TreeDomViewer: a tool for the visualization of phylogeny and protein domain structure

    Get PDF
    Phylogenetic analysis and examination of protein domains allow accurate genome annotation and are invaluable to study proteins and protein complex evolution. However, two sequences can be homologous without sharing statistically significant amino acid or nucleotide identity, presenting a challenging bioinformatics problem. We present TreeDomViewer, a visualization tool available as a web-based interface that combines phylogenetic tree description, multiple sequence alignment and InterProScan data of sequences and generates a phylogenetic tree projecting the corresponding protein domain information onto the multiple sequence alignment. Thereby it makes use of existing domain prediction tools such as InterProScan. TreeDomViewer adopts an evolutionary perspective on how domain structure of two or more sequences can be aligned and compared, to subsequently infer the function of an unknown homolog. This provides insight into the function assignment of, in terms of amino acid substitution, very divergent but yet closely related family members. Our tool produces an interactive scalar vector graphics image that provides orthological relationship and domain content of proteins of interest at one glance. In addition, PDF, JPEG or PNG formatted output is also provided. These features make TreeDomViewer a valuable addition to the annotation pipeline of unknown genes or gene products. TreeDomViewer is available at

    ProGMap: an integrated annotation resource for protein orthology

    Get PDF
    Current protein sequence databases employ different classification schemes that often provide conflicting annotations, especially for poorly characterized proteins. ProGMap (Protein Group Mappings, http://www.bioinformatics.nl/progmap) is a web-tool designed to help researchers and database annotators to assess the coherence of protein groups defined in various databases and thereby facilitate the annotation of newly sequenced proteins. ProGMap is based on a non-redundant dataset of over 6.6 million protein sequences which is mapped to 240 000 protein group descriptions collected from UniProt, RefSeq, Ensembl, COG, KOG, OrthoMCL-DB, HomoloGene, TRIBES and PIRSF. ProGMap combines the underlying classification schemes via a network of links constructed by a fast and fully automated mapping approach originally developed for document classification. The web interface enables queries to be made using sequence identifiers, gene symbols, protein functions or amino acid and nucleotide sequences. For the latter query type BLAST similarity search and QuickMatch identity search services have been incorporated, for finding sequences similar (or identical) to a query sequence. ProGMap is meant to help users of high throughput methodologies who deal with partially annotated genomic data

    Радіолокаційно-вихрострумовий метод виявлення металів

    Get PDF
    Сучасний георадар – це складний геофізичний прилад для неруйнівного контролю неоднорідностей середовища. В основі роботи георадару лежить підповерхневе зондуванняявище відбивання електромагнітної хвилі від межі поділу шарів з різною діелектричною чи магнітною проникністю. Такими межами є локальні неоднорідності різної природи. Георадари з великою вірогідністю визначають цю неоднорідність та глибину її залягання, але не можуть визначити склад неоднорідності, наприклад, це сталь чи золото. Тому виникла необхідність у створенні георадару без цього недоліку

    Ten Simple Rules for Developing a Short Bioinformatics Training Course

    Get PDF
    This is an open-access article under the Creative Commonset.-- et al.This paper considers what makes a short course in bioinformatics successful. In today’s research environment, exposure to bioinformatics training is something that anyone embarking on life sciences research is likely to need at some point. Furthermore, as research technologies evolve, this need will continue to grow. In fact, as a consequence of the introduction of high-throughput technologies, there has already been an increase in demand for training relating to the use of computational resources and tools designed for high-throughput data storage, retrieval, and analysis. Biologists and computational scientists alike are seeking postgraduate learning opportunities in various bioinformatics topics that meet the needs and time restrictions of their schedules. Short, intensive bioinformatics courses (typically from a couple of days to a week in length, and covering a variety of topics) are available throughout the world, and more continue to be developed to meet the growing training needs.This work was partly supported by the Intramural Research Program of the NIH, NLM, NCBI, and by funds awarded to the EMBL-European Bioinformatics Institute by the European Commission under SLING, grant agreement number 226073 (Integrating Activity) within Research Infrastructures of the FP7 Capacities Specific Programme EMBL-EBI.Peer reviewe

    Constraint-based probabilistic learning of metabolic pathways from tomato volatiles

    Get PDF
    Clustering and correlation analysis techniques have become popular tools for the analysis of data produced by metabolomics experiments. The results obtained from these approaches provide an overview of the interactions between objects of interest. Often in these experiments, one is more interested in information about the nature of these relationships, e.g., cause-effect relationships, than in the actual strength of the interactions. Finding such relationships is of crucial importance as most biological processes can only be understood in this way. Bayesian networks allow representation of these cause-effect relationships among variables of interest in terms of whether and how they influence each other given that a third, possibly empty, group of variables is known. This technique also allows the incorporation of prior knowledge as established from the literature or from biologists. The representation as a directed graph of these relationship is highly intuitive and helps to understand these processes. This paper describes how constraint-based Bayesian networks can be applied to metabolomics data and can be used to uncover the important pathways which play a significant role in the ripening of fresh tomatoes. We also show here how this methods of reconstructing pathways is intuitive and performs better than classical techniques. Methods for learning Bayesian network models are powerful tools for the analysis of data of the magnitude as generated by metabolomics experiments. It allows one to model cause-effect relationships and helps in understanding the underlying processes

    Gene Expression in Chicken Reveals Correlation with Structural Genomic Features and Conserved Patterns of Transcription in the Terrestrial Vertebrates

    Get PDF
    Background - The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates. Methodology/Principal Findings - We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO) term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologuous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates. Conclusions - The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems to be selection pressure on economy in genes with a wide tissue distribution, i.e. these genes are more compact. A comparative analysis showed that the expression patterns of orthologous genes are conserved in the terrestrial vertebrates during evolutio

    HSPVdb—the Human Short Peptide Variation Database for improved mass spectrometry-based detection of polymorphic HLA-ligands

    Get PDF
    T cell epitopes derived from polymorphic proteins or from proteins encoded by alternative reading frames (ARFs) play an important role in (tumor) immunology. Identification of these peptides is successfully performed with mass spectrometry. In a mass spectrometry-based approach, the recorded tandem mass spectra are matched against hypothetical spectra generated from known protein sequence databases. Commonly used protein databases contain a minimal level of redundancy, and thus, are not suitable data sources for searching polymorphic T cell epitopes, either in normal or ARFs. At the same time, however, these databases contain much non-polymorphic sequence information, thereby complicating the matching of recorded and theoretical spectra, and increasing the potential for finding false positives. Therefore, we created a database with peptides from ARFs and peptide variation arising from single nucleotide polymorphisms (SNPs). It is based on the human mRNA sequences from the well-annotated reference sequence (RefSeq) database and associated variation information derived from the Single Nucleotide Polymorphism Database (dbSNP). In this process, we removed all non-polymorphic information. Investigation of the frequency of SNPs in the dbSNP revealed that many SNPs are non-polymorphic “SNPs”. Therefore, we removed those from our dedicated database, and this resulted in a comprehensive high quality database, which we coined the Human Short Peptide Variation Database (HSPVdb). The value of our HSPVdb is shown by identification of the majority of published polymorphic SNP- and/or ARF-derived epitopes from a mass spectrometry-based proteomics workflow, and by a large variety of polymorphic peptides identified as potential T cell epitopes in the HLA-ligandome presented by the Epstein–Barr virus cells

    A pipeline for high throughput detection and mapping of SNPs from EST databases

    Get PDF
    Single nucleotide polymorphisms (SNPs) represent the most abundant type of genetic variation that can be used as molecular markers. The SNPs that are hidden in sequence databases can be unlocked using bioinformatic tools. For efficient application of these SNPs, the sequence set should be error-free as much as possible, targeting single loci and suitable for the SNP scoring platform of choice. We have developed a pipeline to effectively mine SNPs from public EST databases with or without quality information using QualitySNP software, select reliable SNP and prepare the loci for analysis on the Illumina GoldenGate genotyping platform. The applicability of the pipeline was demonstrated using publicly available potato EST data, genotyping individuals from two diploid mapping populations and subsequently mapping the SNP markers (putative genes) in both populations. Over 7000 reliable SNPs were identified that met the criteria for genotyping on the GoldenGate platform. Of the 384 SNPs on the SNP array approximately 12% dropped out. For the two potato mapping populations 165 and 185 SNPs segregating SNP loci could be mapped on the respective genetic maps, illustrating the effectiveness of our pipeline for SNP selection and validation

    Methods for interpreting lists of affected genes obtained in a DNA microarray experiment

    Get PDF
    BACKGROUND: The aim of this paper was to describe and compare the methods used and the results obtained by the participants in a joint EADGENE (European Animal Disease Genomic Network of Excellence) and SABRE (Cutting Edge Genomics for Sustainable Animal Breeding) workshop focusing on post analysis of microarray data. The participating groups were provided with identical lists of microarray probes, including test statistics for three different contrasts, and the normalised log-ratios for each array, to be used as the starting point for interpreting the affected probes. The data originated from a microarray experiment conducted to study the host reactions in broilers occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria. RESULTS: Several conceptually different analytical approaches, using both commercial and public available software, were applied by the participating groups. The following tools were used: Ingenuity Pathway Analysis, MAPPFinder, LIMMA, GOstats, GOEAST, GOTM, Globaltest, TopGO, ArrayUnlock, Pathway Studio, GIST and AnnotationDbi. The main focus of the approaches was to utilise the relation between probes/genes and their gene ontology and pathways to interpret the affected probes/genes. The lack of a well-annotated chicken genome did though limit the possibilities to fully explore the tools. The main results from these analyses showed that the biological interpretation is highly dependent on the statistical method used but that some common biological conclusions could be reached. CONCLUSION: It is highly recommended to test different analytical methods on the same data set and compare the results to obtain a reliable biological interpretation of the affected genes in a DNA microarray experimen
    corecore