18,016 research outputs found

    Improving the Fidelity of Optical Zeno Gates via Distillation

    Get PDF
    We have modelled the Zeno effect Control-Sign gate of Franson et al (PRA 70, 062302, 2004) and shown that high two-photon to one-photon absorption ratios, Îș\kappa, are needed for high fidelity free standing operation. Hence we instead employ this gate for cluster state fusion, where the requirement for Îș\kappa is less restrictive. With the help of partially offline one-photon and two-photon distillations, we can achieve a fusion gate with unity fidelity but non-unit probability of success. We conclude that for Îș>2200\kappa > 2200, the Zeno fusion gate will out perform the equivalent linear optics gate.Comment: 6 pages, 11 figures, Submitted to PR

    Properties of a magnetic superconductor with weak magnetization - application to ErNi2B2CErNi_2B_2C

    Full text link
    Using a Ginsburg-Landau free energy functional, we study the H−TH-T phase diagram of a weak magnetic superconductor, where the magnetization from the magnetic component is marginal in supporting a spontaneous vortex phase in absence of external magnetic field. In particular, the competition between the spiral state and spontaneous vortex phase is analysed. Our theory is applied to understand the magnetic properties of ErNi2B2CErNi_2B_2C.Comment: 13 pages, 4 postscript figure

    Finding Faces in Cluttered Scenes using Random Labeled Graph Matching

    Get PDF
    An algorithm for locating quasi-frontal views of human faces in cluttered scenes is presented. The algorithm works by coupling a set of local feature detectors with a statistical model of the mutual distances between facial features it is invariant with respect to translation, rotation (in the plane), and scale and can handle partial occlusions of the face. On a challenging database with complicated and varied backgrounds, the algorithm achieved a correct localization rate of 95% in images where the face appeared quasi-frontally

    Quantum Entanglement Capacity with Classical Feedback

    Full text link
    For any quantum discrete memoryless channel, we define a quantity called quantum entanglement capacity with classical feedback (EBE_B), and we show that this quantity lies between two other well-studied quantities. These two quantities - namely the quantum capacity assisted by two-way classical communication (Q2Q_2) and the quantum capacity with classical feedback (QBQ_B) - are widely conjectured to be different: there exists quantum discrete memoryless channel for which Q2>QBQ_2>Q_B. We then present a general scheme to convert any quantum error-correcting codes into adaptive protocols for this newly-defined quantity of the quantum depolarizing channel, and illustrate with Cat (repetition) code and Shor code. We contrast the present notion with entanglement purification protocols by showing that whilst the Leung-Shor protocol can be applied directly, recurrence methods need to be supplemented with other techniques but at the same time offer a way to improve the aforementioned Cat code. For the quantum depolarizing channel, we prove a formula that gives lower bounds on the quantum capacity with classical feedback from any EBE_B protocols. We then apply this formula to the EBE_B protocols that we discuss to obtain new lower bounds on the quantum capacity with classical feedback of the quantum depolarizing channel

    Novel Phases and Finite-Size Scaling in Two-Species Asymmetric Diffusive Processes

    Full text link
    We study a stochastic lattice gas of particles undergoing asymmetric diffusion in two dimensions. Transitions between a low-density uniform phase and high-density non-uniform phases characterized by localized or extended structure are found. We develop a mean-field theory which relates coarse-grained parameters to microscopic ones. Detailed predictions for finite-size (LL) scaling and density profiles agree excellently with simulations. Unusual large-LL behavior of the transition point parallel to that of self-organized sandpile models is found.Comment: 7 pages, plus 6 figures uuencoded, compressed and appended after source code, LATeX, to be published as a Phys. Rev. Let
    • 

    corecore