338 research outputs found

    An Improved GA Based Modified Dynamic Neural Network for Cantonese-Digit Speech Recognition

    Get PDF
    Author name used in this publication: F. H. F. Leung2007-2008 > Academic research: refereed > Chapter in an edited book (author)published_fina

    Viability of competing field theories for the driven lattice gas

    Full text link
    It has recently been suggested that the driven lattice gas should be described by a novel field theory in the limit of infinite drive. We review the original and the new field theory, invoking several well-documented key features of the microscopics. Since the new field theory fails to reproduce these characteristics, we argue that it cannot serve as a viable description of the driven lattice gas. Recent results, for the critical exponents associated with this theory, are re-analyzed and shown to be incorrect.Comment: 4 pages, revtex, no figure

    Internet-based Multiagent Architecture

    Get PDF
    Research in intelligent agents and multiagent systems that run on the Internet has received increased attention and importance in recent years. Since the Internet continues to grow, intelligent agent technology is progressively being introduced to many Internet-based applications for communications between different applications. The aim of this paper is to present an Internet-based architecture for multiagent systems which offers a communication infrastructure and coordination services for agents to achieve their goals. A structured architecture is proposed to support communication facilities among several agents and coordinate agent activities in distributed environments such as the Internet and Intranets. The architecture consists of 1) Application agents, 2) Communication handler, 3) Knowledge manager, and 4) Repository. (Yuen, et al. 1999; Leung, et al. 1999). These four layers cooperate together and provide common facilities necessary for typical multiagent systems or agent-based applications with various choices. An Internet-based prototype for auditing and detecting unauthorized transactions within an organization over the Internet or an Intranet is implemented to demonstrate the practicability and feasibility of the proposed Internet-based architecture for multiagent systems

    Pricing Link by Time

    Get PDF
    The combination of loss-based TCP and drop-tail routers often results in full buffers, creating large queueing delays. The challenge with parameter tuning and the drastic consequence of improper tuning have discouraged network administrators from enabling AQM even when routers support it. To address this problem, we propose a novel design principle for AQM, called the pricing-link-by-time (PLT) principle. PLT increases the link price as the backlog stays above a threshold β, and resets the price once the backlog goes below β. We prove that such a system exhibits cyclic behavior that is robust against changes in network environment and protocol parameters. While β approximately controls the level of backlog, the backlog dynamics are invariant for β across a wide range of values. Therefore, β can be chosen to reduce delay without undermining system performance. We validate these analytical results using packet-level simulation

    Design of a Switching Controller for Nonlinear Systems With Unknown Parameters Based on a Fuzzy Logic Approach

    Full text link

    Faithful remote state preparation using finite classical bits and a non-maximally entangled state

    Full text link
    We present many ensembles of states that can be remotely prepared by using minimum classical bits from Alice to Bob and their previously shared entangled state and prove that we have found all the ensembles in two-dimensional case. Furthermore we show that any pure quantum state can be remotely and faithfully prepared by using finite classical bits from Alice to Bob and their previously shared nonmaximally entangled state though no faithful quantum teleportation protocols can be achieved by using a nonmaximally entangled state.Comment: 6 page

    Nonequilibrium critical dynamics of the relaxational models C and D

    Full text link
    We investigate the critical dynamics of the nn-component relaxational models C and D which incorporate the coupling of a nonconserved and conserved order parameter S, respectively, to the conserved energy density rho, under nonequilibrium conditions by means of the dynamical renormalization group. Detailed balance violations can be implemented isotropically by allowing for different effective temperatures for the heat baths coupling to the slow modes. In the case of model D with conserved order parameter, the energy density fluctuations can be integrated out. For model C with scalar order parameter, in equilibrium governed by strong dynamic scaling (z_S = z_rho), we find no genuine nonequilibrium fixed point. The nonequilibrium critical dynamics of model C with n = 1 thus follows the behavior of other systems with nonconserved order parameter wherein detailed balance becomes effectively restored at the phase transition. For n >= 4, the energy density decouples from the order parameter. However, for n = 2 and n = 3, in the weak dynamic scaling regime (z_S <= z_rho) entire lines of genuine nonequilibrium model C fixed points emerge to one-loop order, which are characterized by continuously varying critical exponents. Similarly, the nonequilibrium model C with spatially anisotropic noise and n < 4 allows for continuously varying exponents, yet with strong dynamic scaling. Subjecting model D to anisotropic nonequilibrium perturbations leads to genuinely different critical behavior with softening only in subsectors of momentum space and correspondingly anisotropic scaling exponents. Similar to the two-temperature model B the effective theory at criticality can be cast into an equilibrium model D dynamics, albeit incorporating long-range interactions of the uniaxial dipolar type.Comment: Revtex, 23 pages, 5 eps figures included (minor additions), to appear in Phys. Rev.

    Structure Factors and Their Distributions in Driven Two-Species Models

    Full text link
    We study spatial correlations and structure factors in a three-state stochastic lattice gas, consisting of holes and two oppositely ``charged'' species of particles, subject to an ``electric'' field at zero total charge. The dynamics consists of two nearest-neighbor exchange processes, occuring on different times scales, namely, particle-hole and particle-particle exchanges. Using both, Langevin equations and Monte Carlo simulations, we study the steady-state structure factors and correlation functions in the disordered phase, where density profiles are homogeneous. In contrast to equilibrium systems, the average structure factors here show a discontinuity singularity at the origin. The associated spatial correlation functions exhibit intricate crossovers between exponential decays and power laws of different kinds. The full probability distributions of the structure factors are universal asymmetric exponential distributions.Comment: RevTex, 18 pages, 4 postscript figures included, mistaken half-empty page correcte
    corecore