15,280 research outputs found
A rocket-borne pulse-height analyzer for energetic particle measurements
The pulse-height analyzer basically resembles a time-sharing multiplexing data-acquisition system which acquires analog data (from energetic particle spectrometers) and converts them into digital code. The PHA simultaneously acquires pulse-height information from the analog signals of the four input channels and sequentially multiplexes the digitized data to a microprocessor. The PHA together with the microprocessor form an on-board real-time data-manipulation system. The system processes data obtained during the rocket flight and reduces the amount of data to be sent back to the ground station. Consequently the data-reduction process for the rocket experiments is speeded up. By using a time-sharing technique, the throughput rate of the microprocessor is increased. Moreover, data from several particle spectrometers are manipulated to share one information channel; consequently, the TM capacity is increased
Galileo internal electrostatic discharge program
The Galileo spacecraft which will orbit Jupiter in 1988 will encounter a very harsh environment of energetic electrons. These electrons will have sufficient energy to penetrate the spacecraft shielding, consequently depositing charges in the dielectric insulating materials or ungrounded conductors. The resulting electric field could exceed the breakdown strength of the insulating materials, producing discharges. The transients produced from these Internal Electrostatic Discharges (IESD) could, depending on their relative location, be coupled to nearby cables and circuits. These transients could change the state of logic circuits or degrade or even damage spacecraft components, consequently disrupting the operation of subsystems and systems of the Galileo spacecraft during its expected mission life. An extensive testing program was initiated for the purpose of understanding the potential threats associated with these IESD events. Data obtained from these tests were used to define design guidelines
Pyroxenes and olivines in crystalline rocks from ocean of storms
Determination of petrology and deformational state of pyroxenes and olivines in lunar rocks returned by Apollo 12 fligh
Prescription for experimental determination of the dynamics of a quantum black box
We give an explicit prescription for experimentally determining the evolution
operators which completely describe the dynamics of a quantum mechanical black
box -- an arbitrary open quantum system. We show necessary and sufficient
conditions for this to be possible, and illustrate the general theory by
considering specifically one and two quantum bit systems. These procedures may
be useful in the comparative evaluation of experimental quantum measurement,
communication, and computation systems.Comment: 6 pages, Revtex. Submitted to J. Mod. Op
- …