14,992 research outputs found
Galileo internal electrostatic discharge program
The Galileo spacecraft which will orbit Jupiter in 1988 will encounter a very harsh environment of energetic electrons. These electrons will have sufficient energy to penetrate the spacecraft shielding, consequently depositing charges in the dielectric insulating materials or ungrounded conductors. The resulting electric field could exceed the breakdown strength of the insulating materials, producing discharges. The transients produced from these Internal Electrostatic Discharges (IESD) could, depending on their relative location, be coupled to nearby cables and circuits. These transients could change the state of logic circuits or degrade or even damage spacecraft components, consequently disrupting the operation of subsystems and systems of the Galileo spacecraft during its expected mission life. An extensive testing program was initiated for the purpose of understanding the potential threats associated with these IESD events. Data obtained from these tests were used to define design guidelines
Comments on Neutrino Tests of Special Relativity
We point out that the assumption of Lorentz noninvariance examined recently
by Coleman and Glashow leads to neutrino flavor oscillations which are
phenomenologically equivalent to those obtained by assuming the neutrinos
violate the principle of equivalence. We then comment on the limits on Lorentz
noninvariance which can be derived from solar, atmospheric, and accelerator
neutrino experiments.Comment: 5 pages, Revte
Wave Propagation in Gravitational Systems: Completeness of Quasinormal Modes
The dynamics of relativistic stars and black holes are often studied in terms
of the quasinormal modes (QNM's) of the Klein-Gordon (KG) equation with
different effective potentials . In this paper we present a systematic
study of the relation between the structure of the QNM's of the KG equation and
the form of . In particular, we determine the requirements on in
order for the QNM's to form complete sets, and discuss in what sense they form
complete sets. Among other implications, this study opens up the possibility of
using QNM expansions to analyse the behavior of waves in relativistic systems,
even for systems whose QNM's do {\it not} form a complete set. For such
systems, we show that a complete set of QNM's can often be obtained by
introducing an infinitesimal change in the effective potential
Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode
We study light transport in phosphor plates of white light-emitting diodes
(LEDs). We measure the broadband diffuse transmission through phosphor plates
of varying YAG:Ce density. We distinguish the spectral ranges where
absorption, scattering, and re-emission dominate. Using diffusion theory, we
derive the transport and absorption mean free paths from first principles. We
find that both transport and absorption mean free paths are on the order of the
plate thickness. This means that phosphors in commercial LEDs operate well
within an intriguing albedo range around 0.7. We discuss how salient parameters
that can be derived from first principles control the optical properties of a
white LED.Comment: 14 pages, 9 figure
- …