129 research outputs found
The use of three-dimensional printing technology in orthopaedic surgery: A review
Three-dimensional (3-D) printing or additive manufacturing, an advanced technology that 3-D physical models are created, has been wildly applied in medical industries, including cardiothoracic surgery, cranio-maxillo-facial surgery and orthopaedic surgery. The physical models made by 3-D printing technology give surgeons a realistic impression of complex structures, allowing surgical planning and simulation before operations. In orthopaedic surgery, this technique is mainly applied in surgical planning especially revision and reconstructive surgeries, making patient-specific instruments or implants, and bone tissue engineering. This article reviews this technology and its application in orthopaedic surgery.published_or_final_versio
A review of progress and applications of pulsed doppler wind LiDARs
Doppler wind LiDAR (Light Detection And Ranging) makes use of the principle of optical Doppler shift between the reference and backscattered radiations to measure radial velocities at distances up to several kilometers above the ground. Such instruments promise some advantages, including its large scan volume, movability and provision of 3-dimensional wind measurements, as well as its relatively higher temporal and spatial resolution comparing with other measurement devices. In recent decades, Doppler LiDARs developed by scientific institutes and commercial companies have been well adopted in several real-life applications. Doppler LiDARs are installed in about a dozen airports to study aircraft-induced vortices and detect wind shears. In the wind energy industry, the Doppler LiDAR technique provides a promising alternative to in-situ techniques in wind energy assessment, turbine wake analysis and turbine control. Doppler LiDARs have also been applied in meteorological studies, such as observing boundary layers and tracking tropical cyclones. These applications demonstrate the capability of Doppler LiDARs for measuring backscatter coefficients and wind profiles. In addition, Doppler LiDAR measurements show considerable potential for validating and improving numerical models. It is expected that future development of the Doppler LiDAR technique and data processing algorithms will provide accurate measurements with high spatial and temporal resolutions under different environmental conditions
Crossing Boundaries: Tapestry Within the Context of the 21st Century
International audienceGraphical model processing is a central problem in artificial intelligence. The optimization of the combined cost of a network of local cost functions federates a variety of famous problems including CSP, SAT and Max-SAT but also optimization in stochastic variants such as Markov Random Fields and Bayesian networks. Exact solving methods for these problems typically include branch and bound and local inference-based bounds.In this paper we are interested in understanding when and how dynamic programming based optimization can be used to efficiently enforce soft local consistencies on Global Cost Functions, defined as parameterized families of cost functions of unbounded arity. Enforcing local consistencies in cost function networks is performed by applying so-called Equivalence Preserving Transformations (EPTs) to the cost functions. These EPTs may transform global cost functions and make them intractable to optimize.We identify as tractable projection-safe those global cost functions whose optimization is and remains tractable after applying the EPTs used for enforcing arc consistency. We also provide new classes of cost functions that are tractable projection-safe thanks to dynamic programming.We show that dynamic programming can either be directly used inside filtering algorithms, defining polynomially DAG-filterable cost functions, or emulated by arc consistency filtering on a Berge-acyclic network of bounded-arity cost functions, defining Berge-acyclic network-decomposable cost functions. We give examples of such cost functions and we provide a systematic way to define decompositions from existing decomposable global constraints.These two approaches to enforcing consistency in global cost functions are then embedded in a solver for extensive experiments that confirm the feasibility and efficiency of our proposal
PLASER: Pronunciation Learning via Automatic Speech Recognition
PLASER is a multimedia tool with instant feedback designed to teach English pronunciation for high-school students of Hong Kong whose mother tongue is Cantonese Chinese. The objective is to teach correct pronunciation and not to assess a student's overall pronunciation quality. Major challenges related to speech recognition technology include: allowance for non-native accent, reliable and corrective feedbacks, and visualization of errors
Strategies to improve palatability and increase consumption intentions for Momordica charantia (bitter melon): A vegetable commonly used for diabetes management
<p>Abstract</p> <p>Background</p> <p>Although beneficial to health, dietary phytonutrients are bitter, acid and/or astringent in taste and therefore reduce consumer choice and acceptance during food selection. <it>Momordica charantia</it>, commonly known as bitter melon has been traditionally used in Ayurvedic and Chinese medicine to treat diabetes and its complications. The aim of this study was to develop bitter melon-containing recipes and test their palatability and acceptability in healthy individuals for future clinical studies.</p> <p>Methods</p> <p>A cross-sectional sensory evaluation of bitter melon-containing ethnic recipes was conducted among 50 healthy individuals. The primary endpoints assessed in this analysis were current consumption information and future intentions to consume bitter melon, before and after provision of attribute- and health-specific information. A convenience sample of 50, self-reported non-diabetic adults were recruited from the University of Hawaii. Sensory evaluations were compared using two-way ANOVA, while differences in stage of change (SOC) before and after receiving health information were analyzed by Chi-square (χ<sup>2</sup>) analyses.</p> <p>Results</p> <p>Our studies indicate that tomato-based recipes were acceptable to most of the participants and readily acceptable, as compared with recipes containing spices such as curry powder. Health information did not have a significant effect on willingness to consume bitter melon, but positively affected the classification of SOC.</p> <p>Conclusions</p> <p>This study suggests that incorporating bitter foods in commonly consumed food dishes can mask bitter taste of bitter melon. Furthermore, providing positive health information can elicit a change in the intent to consume bitter melon-containing dishes despite mixed palatability results.</p
Ceacam1 separates graft-versus-host-disease from graft-versus-tumor activity after experimental allogeneic bone marrow transplantation.
BACKGROUND: Allogeneic bone marrow transplantation (allo-BMT) is a potentially curative therapy for a variety of hematologic diseases, but benefits, including graft-versus-tumor (GVT) activity are limited by graft-versus-host-disease (GVHD). Carcinoembryonic antigen related cell adhesion molecule 1 (Ceacam1) is a transmembrane glycoprotein found on epithelium, T cells, and many tumors. It regulates a variety of physiologic and pathological processes such as tumor biology, leukocyte activation, and energy homeostasis. Previous studies suggest that Ceacam1 negatively regulates inflammation in inflammatory bowel disease models.
METHODS: We studied Ceacam1 as a regulator of GVHD and GVT after allogeneic bone marrow transplantation (allo-BMT) in mouse models. In vivo, Ceacam1(-/-) T cells caused increased GVHD mortality and GVHD of the colon, and greater numbers of donor T cells were positive for activation markers (CD25(hi), CD62L(lo)). Additionally, Ceacam1(-/-) CD8 T cells had greater expression of the gut-trafficking integrin α(4)β(7), though both CD4 and CD8 T cells were found increased numbers in the gut post-transplant. Ceacam1(-/-) recipients also experienced increased GVHD mortality and GVHD of the colon, and alloreactive T cells displayed increased activation. Additionally, Ceacam1(-/-) mice had increased mortality and decreased numbers of regenerating small intestinal crypts upon radiation exposure. Conversely, Ceacam1-overexpressing T cells caused attenuated target-organ and systemic GVHD, which correlated with decreased donor T cell numbers in target tissues, and mortality. Finally, graft-versus-tumor survival in a Ceacam1(+) lymphoma model was improved in animals receiving Ceacam1(-/-) vs. control T cells.
CONCLUSIONS: We conclude that Ceacam1 regulates T cell activation, GVHD target organ damage, and numbers of donor T cells in lymphoid organs and GVHD target tissues. In recipients of allo-BMT, Ceacam1 may also regulate tissue radiosensitivity. Because of its expression on both the donor graft and host tissues, this suggests that targeting Ceacam1 may represent a potent strategy for the regulation of GVHD and GVT after allogeneic transplantation
- …