38 research outputs found

    AluScan: a method for genome-wide scanning of sequence and structure variations in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To complement next-generation sequencing technologies, there is a pressing need for efficient pre-sequencing capture methods with reduced costs and DNA requirement. The Alu family of short interspersed nucleotide elements is the most abundant type of transposable elements in the human genome and a recognized source of genome instability. With over one million Alu elements distributed throughout the genome, they are well positioned to facilitate genome-wide sequence amplification and capture of regions likely to harbor genetic variation hotspots of biological relevance.</p> <p>Results</p> <p>Here we report on the use of inter-Alu PCR with an enhanced range of amplicons in conjunction with next-generation sequencing to generate an Alu-anchored scan, or 'AluScan', of DNA sequences between Alu transposons, where Alu consensus sequence-based 'H-type' PCR primers that elongate outward from the head of an Alu element are combined with 'T-type' primers elongating from the poly-A containing tail to achieve huge amplicon range. To illustrate the method, glioma DNA was compared with white blood cell control DNA of the same patient by means of AluScan. The over 10 Mb sequences obtained, derived from more than 8,000 genes spread over all the chromosomes, revealed a highly reproducible capture of genomic sequences enriched in genic sequences and cancer candidate gene regions. Requiring only sub-micrograms of sample DNA, the power of AluScan as a discovery tool for genetic variations was demonstrated by the identification of 357 instances of loss of heterozygosity, 341 somatic indels, 274 somatic SNVs, and seven potential somatic SNV hotspots between control and glioma DNA.</p> <p>Conclusions</p> <p>AluScan, implemented with just a small number of H-type and T-type inter-Alu PCR primers, provides an effective capture of a diversity of genome-wide sequences for analysis. The method, by enabling an examination of gene-enriched regions containing exons, introns, and intergenic sequences with modest capture and sequencing costs, computation workload and DNA sample requirement is particularly well suited for accelerating the discovery of somatic mutations, as well as analysis of disease-predisposing germline polymorphisms, by making possible the comparative genome-wide scanning of DNA sequences from large human cohorts.</p

    An endoscopic modification of the simultaneous ‘above and below’ approach to large pituitary adenomas

    Get PDF
    Surgical resections of large-to-giant pituitary adenomas (PA) are technically challenging procedures. Tumors with a fibrous consistency or ‘hour-glass’ configurations are particularly difficult to remove completely and safely through the transsphenoidal route alone. Although the transcranial approach can facilitate the removal of a large suprasellar mass, it may be associated with significant bleeding within the intradural space. A simultaneous microscopic transcranial and transsphenoidal approach has been described as an alternative surgical strategy. We have further modified this ‘above and below’ approach by adopting endoscopic techniques for the transsphenoidal part of the procedure. This modified approach has the advantages of requiring only one operating microscope, and permitting freer maneuvers and easier orientation for both surgical teams. We present two patients successfully treated with this approach. Complete tumor removal was achieved and both patients achieved satisfactory functional recovery

    Trauma system and traumatic brain injury in Hong Kong

    No full text
    published_or_final_versionSurgeryMasterMaster of Surger

    Applications of self-assembling peptide nanofibre scaffold and mesenchymal stem cell graft in surgery-induced brain injury

    No full text
    Surgery-induced brain injury (SBI) refers to trauma caused by routine neurosurgical procedures that may result in post-operative complications and neurological deficits. Unlike accidental trauma, SBI is potentially subject to preemptive interventions at the time of surgery. SBI can cause bleeding, inflammation and the formation of tissue gaps. Conventional haemostatic techniques, though effective, are not necessarily conducive to healing. Inflammation and the absence of extracellular matrix in tissue gaps also hinder regeneration after SBI. This study investigated the applications of RADA16-I, a type I self-assembling peptide nanofibre scaffold (SAPNS), and mesenchymal stem cells (MSCs) in the treatment of SBI. Using animal SBI models, treatments were applied immediately and locally onto the operative fields, taking advantages of the haemostatic and cell-carrying properties of RADA16-I, the immune- modulatory effects of MSCs, and the earliest available therapeutic window for SBI. There were three objectives. Objective 1 was to compare RADA16-I with conventional haemostatic methods, including electrocautery and fibrin sealant, in their effects on the brain’s acute cellular inflammatory response. The hypothesis was that RADA16-I would cause the same or a lesser degree of inflammation. This study showed that RADA16-I was superior to electrocautery, and was noninferior to conventional topical haemostats. Objective 2 was to study the in vitro expansion of MSCs within RADA16-I in preparation for in vivo transplantation. The hypothesis was that the in vitro survival of MSCs would vary between different RADA16-I concentrations and culturing methods. This study showed that plating MSCs onto pre-buffered RADA16-I would protect the cells against RADA16-I’s intrinsic acidity and result in better initial survival. Subsequent integration with the RADA16-I hydrogel, however, was poor. Mixing the cells directly with RADA16-I caused initial cell loss but allowed better integration. RADA16-I at lower concentrations resulted in better survival but also more fragile hydrogels that were mechanically unfit for transplantation. Mixing MSCs with 0.5% RADA16-I for seven days represented a compromise between these competing factors. Objective 3 was to study the in vivo effects of a MSC-RADA16-I implant on tissue reactions after SBI. The hypothesis was that the combinatorial therapy would result in less cellular inflammatory response than MSC alone or RADA16-I alone. Implants of pre-buffered 0.5% RADA16-I hydrogel, with or without cells, were found to cause less inflammation than control. MSCs in free suspension resulted in significantly more pronounced inflammation than when carried in RADA16-I. Supplementing RADA16-I with MSCs, however, did not confer additional benefit over RADA16-I alone. The present study provided new preclinical evidence to support future clinical testing of RADA16-I as a novel surgical haemostat. It also demonstrated the feasibility of early intracerebral transplantation of RADA16-I hydrogel in the treatment of SBI. Whether RADA16-I and/or transplanted MSCs could modulate the brain’s inflammatory response after SBI require further investigations, which may include the search for the optimal ex vivo expansion technique and specifically tailored nanofibre scaffold. The translational applications of these findings would include the treatment of SBI over critical brain regions where trauma would cause severe functional deficits and where better healing would facilitate patient recovery.published_or_final_versionAnatomyDoctoralDoctor of Philosoph

    A Review on Adducin from Functional to Pathological Mechanisms: Future Direction in Cancer

    No full text
    Adducin (ADD) is a family of membrane skeleton proteins including ADD1, ADD2, and ADD3 that are encoded by distinct genes on different chromosomes. Adducin is primarily responsible for the assembly of spectrin-actin network that provides physical support to the plasma membrane and mediates signal transduction in various cellular physiological processes upon regulation by protein kinase C-dependent and calcium/calmodulin-dependent pathways. Abnormal phosphorylation, genetic variations, and alternative splicing of adducin may contribute to alterations in cellular functions involved in pathogenic processes. These alterations are associated with a wide range of diseases including cancer. This paper begins with a discussion on how adducin partakes in the structural formation of membrane skeleton, its regulation, and related functional characteristics, followed by a review on the pathogenesis of hypertension, biliary atresia, and cancer with respect to increased disease susceptibility mediated by adducin polymorphism and/or dysregulation. Given the functional diversity of adducin in different cellular compartments, we aim to provide a knowledge base whereby its pathophysiological roles can be better understood. More importantly, we aim to provide novel insights that may be of significance in turning the adducin model to clinical application

    Diagnostic accuracy of Focused Abdominal Sonography

    No full text
    【Abstract】Objective: Focused Abdominal Sono-graphy for Trauma (FAST) is widely used for the detection of intraperitoneal free fluids in patients suffering from blunt abdominal trauma (BAT). This study aimed at assessing the diagnostic accuracy of this investigation in a designated trauma centre. Methods: This was a retrospective study of BAT pa-tients over a 6 year period seen in a trauma centre in Hong Kong. FAST findings were compared with laparotomy, ab-dominal computed tomography or autopsy findings, which served as the gold standard for presence of intraperi-toneal free fluids. The patients who did not have FAST or gold standard confirmatory test performed, had preexisting peritoneal fluid, died at resuscitation or had imcomplete docu-mentation of FAST findings were excluded. The performance of FAST was expressed as sensitivity, specificity, predic-tive values (PV), likelihood ratios (LR) and accuracy. Results: FAST was performed in 302 patients and 153 of them were included in this analysis. The sensitivity, specificity, positive PV, negative PV, positive LR, negative LR and accuracy for FAST were respectively 50.0%, 97.3%, 87.0%, 84.6%, 18.8, 0.5 and 85.0%. FAST was found to be more sensitive in less severely injured patients and more specific in more severely injured patients. Conclusion: FAST is a reliable investigation in the initial assessment of BAT patients. The diagnostic values of FAST could be affected by the severity of injury and staff training is needed to further enhance its effective use. Key words: Laparotomy; Autopsy; Tomography, X-ray computed; Tomography, spiral computed; Ultra-sonograph

    Caffeine Sensitizes U87-MG Human Glioblastoma Cells to Temozolomide through Mitotic Catastrophe by Impeding G2 Arrest

    No full text
    Temozolomide (TMZ) is the first-line chemotherapeutic agent in the treatment of glioblastoma multiforme (GBM). Despite its cytotoxic effect, TMZ also induces cell cycle arrest that may lead to the development of chemoresistance and eventual tumor recurrence. Caffeine, a widely consumed neurostimulant, shows anticancer activities and is reported to work synergistically with cisplatin and camptothecin. The present study aimed to investigate the effects and the mechanisms of action of caffeine used in combination with TMZ in U87-MG GBM cells. As anticipated, TMZ caused DNA damage mediated by the ATM/p53/p21 signaling pathway and induced significant G2 delay. Concurrent treatment with caffeine repressed proliferation and lowered clonogenic capacity on MTT and colony formation assays, respectively. Mechanistic study showed that coadministration of caffeine and TMZ suppressed the phosphorylation of ATM and p53 and downregulated p21 expression, thus releasing DNA-damaged cells from G2 arrest into premature mitosis. Cell cycle analysis demonstrated that the proportion of cells arrested in G2 phase decreased when caffeine was administered together with TMZ; at the same time, the amount of cells with micronucleation and multipolar spindle poles increased, indicative of enhanced mitotic cell death. Pretreatment of cells with caffeine further enhanced mitotic catastrophe development in combined treatment and sensitized cells to apoptosis when followed by TMZ alone. In conclusion, our study demonstrated that caffeine enhanced the efficacy of TMZ through mitotic cell death by impeding ATM/p53/p21-mediated G2 arrest
    corecore