40 research outputs found

    A Solid-State Battery Cathode with a Polymer Composite Electrolyte and Low Tortuosity Microstructure by Directional Freezing and Polymerization

    Get PDF
    Solid‐state Li metal batteries (SSLMBs) combine improved safety and high specific energy that can surpass current Li ion batteries. However, the Li^{+} ion diffusivity in a composite cathode—a combination of active material and solid‐state electrolyte (SSE)—is at least an order of magnitude lower than that of the SSE alone because of the highly tortuous ion transport pathways in the cathode. This lowers the realizable capacity and mandates relatively thin (30–300 μm) cathodes, and hence low overall energy storage. Here, a thick (600 μm) hybrid cathode comprising vertically aligned LiNi_{0.8}Mn_{0.1}Co_{0.1}O_{2} (NMC811)‐rich channels filled with a [LiTFSI+PEGMA+MePrPyl TFSI] polymer composite electrolyte is fabricated by an innovative directional freezing and polymerization method. X‐ray micro‐computed tomography, ion mobility simulations, and DC depolarization show that the cathode structure improves Li^{+} ion diffusivity in the cathode from 4.4 × 10^{-9} to 1.4 × 10^{-7} cm^{2} s^{−1}. In a SSLMB full cell at 25 oC, the cathode provides gravimetric capacities of 199 and 120 mAh g^{−1}, and ultra‐high areal capacities of 16.7 and 10.1 mAh cm^{−2} at 0.05 and 1 C, respectively. The work demonstrates a scalable approach to realizing composite cathode structures with kinetically favorable ion transport characteristics in SSLMBs

    Capturing Marangoni flow via synchrotron imaging of selective laser melting

    Get PDF
    Marangoni flow has a substantial influence on the quality of components fabricated via laser powder bed fusion (LPBF). However, Marangoni flow in melt pools is rarely quantified due to the opacity of liquid metals and the necessity for in situ evaluation. Here we report the findings of high-temporal-resolution synchrotron x-ray radiography experiments tracking the flow in the melt-pool. Dense, highly attenuating tungsten carbide particles are seeded within an elemental powder blend of aluminium and copper of varying composition. Due to the extremely high temporal resolution of greater than 50 kfps at the 31-ID-B beamline at the Advanced Photon Source, USA, we can track the position of tracer particles from frame to frame. This data provides valuable process guidance for optimising mixing and informs the development and validation of multiphysics models

    The effects of powder reuse on the mechanical response of electron beam additively manufactured Ti6Al4V parts

    Get PDF
    High cost of metal powders has increased the demand for recycling of unmelted powder in electron beam powder bed fusion additive manufacturing process. However, powder characteristics are likely to change during manufacturing, recovery and reuse. It is important to track the evolution of powder characteristics at different stages of recycling to produce components with consistent properties. The present work evaluates the changes in Ti6Al4V powder properties during manufacturing by characterising powder particles at different locations in the powder bed; recovery and reuse, through evaluating the effects of the powder recovery system and sieving for 10 build cycles. Heterogeneous powder degradation occurred during manufacturing with the particles closer to the melt zone showing higher oxygen content and thicker α laths with β phase boundaries. Most of them had a hard-sintered and agglomerated powder morphology in contrast to particles at the edges of the powder bed. Recovery and reuse resulted in a refined particle size distribution, but only marginal change in powder morphology. The increased oxygen caused a slight increase in the yield and tensile strengths of the build. The effect of powder reuse on material elongation, hardness and Charpy impact energy was negligible. The high cycle fatigue performance deteriorated with reuse due to the increased lack-of-fusion defects. This might be attributed to the voids formed in the powder bed due to decrease in the number of fine particles coupled with an increase in the number of high-aspect ratio particles

    Effect of preheating on the thermal, microstructural and mechanical properties of selective electron beam melted Ti-6Al-4V components

    Get PDF
    Two-stage preheating is used in selective electron beam melting (SEBM) to prevent powder spreading during additive manufacturing (AM); however, its effects on part properties have not been widely investigated. Here, we employed three different preheat treatments (energy per unit area, E_{A} to a Ti-6Al-4V powder bed. Each standalone build, we fabricated a large block sample and seven can-shaped samples containing sintered powder. X-ray computed tomography (XCT) was employed to quantify the porosity and build accuracy of the can-shaped samples. The effective thermal conductivity of the sintered powder bed was estimated by XCT image-based modelling. The microstructural and mechanical properties of the block sample were examined by scanning electron microscopy and microhardness testing, respectively. The results demonstrate that increasing E_{A} reduces the anisotropy of tortuosity and increases the thermal conductivity of the sintered powder bed, improving the heat transfer efficiency for subsequent beam-matter interaction. High preheat has a negligible effect on the porosity of large AM components; however, it decreases the microhardness from 330 ± 7 to 315 ± 11 HV0.5 and increases the maximum build error from 330 to 400 μm. Our study shows that a medium E_{A} (411 kJ m^{-2} is sufficient to produce components with a high hardness whilst optimising build accuracy

    In situ monitoring the effects of Ti6Al4V powder oxidation during laser powder bed fusion additive manufacturing

    Get PDF
    Making laser powder bed fusion (L-PBF) additive manufacturing process sustainable requires effective powder recycling. Recycling of Ti6Al4V powder in L-PBF can lead to powder oxidation, however, such impact on laser-matter interactions, process, and defect dynamics during L-PBF are not well understood. This study reveals and quantifies the effects of processing Ti6Al4V powders with low (0.12 wt%) and high (0.40 wt%) oxygen content during multilayer thin-wall L-PBF using in situ high speed synchrotron X-ray imaging. Our results reveal that high oxygen content Ti6Al4V powder can reduce melt ejections, surface roughness, and defect population in the built parts. With increasing oxygen content in the part, there is an increase in microhardness due to solid solution strengthening and no significant change in the microstructure is evident

    The role of in-situ nano-TiB2 particles in improving the printability of noncastable 2024Al alloy

    Get PDF
    In-situ pre-decorated different content of TiB2 particle reinforced 2024 Al matrix composites (xTiB2/2024Al composite, x = 0, 1, 2, 4, 6, 8 wt.%) were printed by laser powder bed fusion (LPBF). A quantitative equation was established to quantify heterogeneous nucleating potency by TiB2 nanoparticles on the grain size of the LPBFed samples. Optimized mechanical properties were obtained in the as-printed 4TiB2/2024Al alloy which proved the feasibility of replacing the wrought part with the LPBFed one. This manuscript provides a method to determine the optimized content of TiB2 nanoparticles to change the noncastable material to the printable one

    3D correlative imaging of lithium ion concentration in a vertically oriented electrode microstructure with a density gradient

    Get PDF
    The performance of Li+ ion batteries (LIBs) is hindered by steep Li+ ion concentration gradients in the electrodes. Although thick electrodes (≥300 µm) have the potential for reducing the proportion of inactive components inside LIBs and increasing battery energy density, the Li+ ion concentration gradient problem is exacerbated. Most understanding of Li+ ion diffusion in the electrodes is based on computational modeling because of the low atomic number (Z) of Li. There are few experimental methods to visualize Li+ ion concentration distribution of the electrode within a battery of typical configurations, for example, coin cells with stainless steel casing. Here, for the first time, an interrupted in situ correlative imaging technique is developed, combining novel, full-field X-ray Compton scattering imaging with X-ray computed tomography that allows 3D pixel-by-pixel mapping of both Li+ stoichiometry and electrode microstructure of a LiNi0.8Mn0.1Co0.1O2 cathode to correlate the chemical and physical properties of the electrode inside a working coin cell battery. An electrode microstructure containing vertically oriented pore arrays and a density gradient is fabricated. It is shown how the designed electrode microstructure improves Li+ ion diffusivity, homogenizes Li+ ion concentration through the ultra-thick electrode (1 mm), and improves utilization of electrode active materials
    corecore