4 research outputs found

    Sliding lubricated anisotropic rough surfaces

    Get PDF
    The object of this paper is to study the effects of lubricant film flow, pressurized and sheared between two parallel rough surfaces in sliding motion. The influence of microscopic surface roughness on lubricant film flow macroscopic behavior is described through five nondimensional parameters called flow factors. These macroscopic transport parameters are related to the local geometry of apertures and surfaces. Short- and long-range-correlated surface roughnesses display very different macroscopic behaviors when surfaces are close to contact. These behaviors are related to underlying surface roughness parameters such as the correlation length and the self-affine Hurst exponent. The problem is numerically studied, and results are compared to some analytical asymptotic results

    Averaged Reynolds Equation for Flows between Rough Surfaces in Sliding Motion

    Get PDF
    The flow between rough surfaces in sliding motion with contacts between these surfaces, is analyzed through the volume averaging method. Assuming a Reynolds (lubrication) approximation at the roughness scale, an average flow model is obtained combining spatial and time average. Time average, which is often omitted in previous works, is specially discussed. It is shown that the effective transport coefficients, traditionally termed ‘flow factors’ in the lubrication literature, that appear in the average equations can be obtained from the solution to two closure problems. This allows for the numerical determination of flow factors on firmer bases and sheds light on some arguments to the literature. Moreover, fluid flows through fractures form an important subset of problems embodied in the present analysis, for which macroscopisation is given

    Average Flow Model of Rough Surface Lubrication: Flow Factors for Sinusoidal Surfaces

    No full text
    The effects of lubricant film flow, pressurized and sheared between two parallel sinusoidal wavy surfaces in sliding motion is studied analytically. Results are presented using a flow factor model which provides an average description of the surfaces roughness impact. Two distinct cases are studied in order to compare stationary or time dependent local aperture configurations. Flow factors are computed respectively for each case through spatial or spatio-temporal average, revealing striking differences. The results shed light on the relevance of the composite roughness concept. Special attention is paid to the flow factor analytical behavior when surfaces are near contact
    corecore