4 research outputs found

    All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp.

    No full text
    International audienceWe present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination of the imprinted hybrid sol-gel material produces purely inorganic silica, which has very low autofluorescence and can be fusion bonded to a glass lid. Compared to top-down processing of fused silica or silicon substrates, imprint of sol-gel silica enables fabrication of high-quality nanofluidic devices without expensive high-vacuum lithography and etching techniques. The applicability of the fabricated device for single-molecule studies is demonstrated by measuring the extension of DNA molecules of different lengths confined in the nanochannels

    Self-assembled Titanium Calcium Oxide Nanopatterns as versatile Reactive Nanomasks for Dry Etching Lithographic Transfer with High Selectivity

    No full text
    International audienceWe report the simple preparation of ultra-thin self-assembled nanoperforated titanium calcium oxide films and their use as Reactive NanoMasks for selective dry etching of silicon. The novel reactive nanomask is composed of TiO2 to which up to 50% of Ti was replaced by Ca (CaxTi(1-x)O(2-x)). The system has been prepared by evaporation induced self-assembly of dip-coated solution of CaCl2, TiCl4 and poly(butadiene-block-ethylene oxide) followed by 5 min of thermal treatment at 500 °C in air. The mask exhibits enhanced selectivity by forming a CaF2 protective layer in the presence of a chemically reactive fluorinated plasma. In particular it is demonstrated that ordered nano-arrays of dense Si pillars, or deep cylindrical wells, with high aspect ratio i.e. lateral dimensions as small as 20 nm and height up to 200 nm, can be formed. Both wells and pillars were formed by tuning the morphology and the homogeneity of the deposited mask. The mask preparation is extremely fast and simple, low-cost and easily scalable. Its combination with reactive ion etching constitutes one of the first examples of what can be achieved when sol-gel chemistry is coupled with top-down technologies. The resulting Si nanopatterns and nanostructures are of high interest for applications in many fields of nanotechnology including electronics and optics. This work extends and diversifies the toolbox of nanofabrication methods

    High Efficiency White Luminescence of Alumina doped ZnO

    No full text
    International audienceThe application of Alumina-doped ZnO (AZO) films as luminescent material for large area lighting sources has been evaluated. Thin films were grown on quartz using magnetron sputtering and subsequently annealed under argon atmosphere in a rapid thermal annealing experiment. Below 550 °C, red-shift of the optical band gap and increase of the visible emission are observed in agreement with Al diffusion and formation of interstitial oxygen atoms. At temperatures higher than 800 °C, diffusion is activated and Ostwald ripening leads to the formation of larger grains and an increase of the crystalline phase. The photoluminescence (PL) intensity is enhanced, specifically in the UV range. As a result the emission spectrum of AZO thin films can be adjusted by the annealing conditions, with equal contributions from the UV and orange parts of the PL spectrum resulting in an efficient white emission as quantified using the color space map of the Commission Internationale de l'Éclairage
    corecore