5 research outputs found

    Tip-timing analysis of last stage steam turbine mistuned bladed disc during run-down

    No full text
    This paper presents the experimental and numerical studies of last stage LP mistuned steam turbine bladed discs during run-down. The natural frequencies and mode shapes of the turbine bladed disc were calculated using an FE model. The influence of shaft was considered. The tip-timing method was used to find the mistuned bladed disc modes and frequencies. The numerical results were compared with experimental ones

    Tip-timing analysis of last stage steam turbine mistuned bladed disc during run-down

    No full text
    This paper presents the experimental and numerical studies of last stage LP mistuned steam turbine bladed discs during run-down. The natural frequencies and mode shapes of the turbine bladed disc were calculated using an FE model. The influence of shaft was considered. The tip-timing method was used to find the mistuned bladed disc modes and frequencies. The numerical results were compared with experimental ones

    Nonsynchronous Rotor Blade Vibrations in Last Stage of 380 MW LP Steam Turbine at Various Condenser Pressures

    No full text
    This paper presents an analysis of nonsynchronous rotor blade vibrations in the last stage of an LP steam turbine at various condenser pressures. The nonlinear least squares Levenberg–Marquardt method is used in a tip-timing analysis to determine nonsynchronous multimode rotor blade vibrations, which is a novelty. This is done with two sensors in the casing and a once-per-revolution sensor. The accuracy of the nonlinear least squares Levenberg–Marquardt multimode method is compared with the one-mode linear method. The algorithm is verified by comparing it with one-mode tip-timing methods for synchronous and nonsynchronous vibrations. The analysis shows that the rotor blades vibrate simultaneously with two modes in non-nominal conditions, which is also a novelty. The rotor frequencies are unchanged, although the blade vibration amplitudes vary, depending on the pressure in the condenser. Flutter does not appear in the last stage for the various condenser pressures and powers that were tested

    Nonsynchronous Rotor Blade Vibrations in Last Stage of 380 MW LP Steam Turbine at Various Condenser Pressures

    No full text
    This paper presents an analysis of nonsynchronous rotor blade vibrations in the last stage of an LP steam turbine at various condenser pressures. The nonlinear least squares Levenberg–Marquardt method is used in a tip-timing analysis to determine nonsynchronous multimode rotor blade vibrations, which is a novelty. This is done with two sensors in the casing and a once-per-revolution sensor. The accuracy of the nonlinear least squares Levenberg–Marquardt multimode method is compared with the one-mode linear method. The algorithm is verified by comparing it with one-mode tip-timing methods for synchronous and nonsynchronous vibrations. The analysis shows that the rotor blades vibrate simultaneously with two modes in non-nominal conditions, which is also a novelty. The rotor frequencies are unchanged, although the blade vibration amplitudes vary, depending on the pressure in the condenser. Flutter does not appear in the last stage for the various condenser pressures and powers that were tested

    New blade tip-timing system for measuring rotor blade vibration of steam and gas turbines

    No full text
    One of the crucial issues regarding turbine maintenance is registering blade vibrations. These vibrations can cause serious damage to the engine. Turbine blade vibrations were measured during nominal speed as well as during run up and run down. A new, low cost Blade Tip Timing (BTT) is presented in this paper. It composes of two main modules: the FPGA unit and PC unit. The system is based on the TerasIC DE0-CV development board controlled by the Cyclone V 5CEBA4F23C7 chip. Units communicate via an Ethernet interface. The system measures a signal for every revolution as well as up to three signals coming from independent rotor blade sensors. The PC unit records these data in .csv files. The system can be adapted to process the signals of additional sensors. The measurements of the 1st stage compressor blade vibrations in an SO-3 engine prove that the system works correctly, with no data loss during transmission between system units, and compares well with other measurement systems as well as numerical results
    corecore