961 research outputs found
An Agent Based Approach for the Decentralised Compensation of Business Processes
An automated execution of business processes, composed of Web Services, also requires a reliable error handling and in the case of failures at least parts of a process need to be recovered. One way to enable a forward oriented recovery is compensation which allows to semantically undo effects even "long" time after the process --a long running transaction-- commits. Usually, compensation as for example applied in BPEL (Business Process Execution Language), requires that all compensation steps associated with the business process perform successfully. Also, the conditions for a compensation are not considered and it is not dynamic. In some business scenarios, e.g. a complex production process involving several partners, compensation is a commitment under certain conditions. These conditions in turn can be dynamic and interdependent. Often, a lot of human effort is required to perform compensation. Agents in turn, can enable a decentralised compensation in which agents negotiate a commitment to find a proper compensation strategy. Especially in highly dynamic environment this enables on the one hand a dynamic compensation, and on the other it can support human decision finding in case of failure
Advanced double layer capacitors
There is a need for large amounts of power to be delivered rapidly in a number of airborne and space systems. Conventional, portable power sources, such as batteries, are not suited to delivering high peak power pulses. The charge stored at the electrode-electrolyte double layer is, however, much more assessible on a short time scale. Devices exploiting this concept were fabricated using carbon and metal oxides (Pinnacle Research) as the electrodes and sulfuric acid as the electrolyte. The approach reported, replaces the liquid sulfuric acid electrolyte with a solid ionomer electrolyte. The challenge is to form a solid electrode-solid ionomer electrolyte composite which has a high capacitance per geometric area. The approach to maximize contact between the electrode particles and the ionomer was to impregnate the electrode particles using a liquid ionomer solution and to bond the solvent-free structure to a solid ionomer membrane. Ruthenium dioxide is the electrode material used. Three strategies are being pursued to provide for a high area electrode-ionomer contact: mixing of the RuOx with a small volume of ionomer solution followed by filtration to remove the solvent, and impregnation of the ionomer into an already formed RuOx electrode. RuOx powder and electrodes were examined by non-electrochemical techniques. X-ray diffraction has shown that the material is almost pure RuO2. The electrode structure depends on the processing technique used to introduce the Nafion. Impregnated electrodes have Nafion concentrated near the surface. Electrodes prepared by the evaporation method show large aggregates of crystals surrounded by Nafion
Non-noble electrocatalysts for alkaline fuel cells
The doping of solid phase precursors followed by pyrolysis or the copyrolysis of gas phase precursors has allowed us to produce catalysts with good activity toward oxygen reduction. Efforts are currently underway to better understand the reasons for the catalytic activity of the bulk doped catalysts with a view toward further improving their activity
Advanced double layer capacitors
Work was conducted that could lead to a high energy density electrochemical capacitor, completely free of liquid electrolyte. A three-dimensional RuO sub x-ionomer composite structure has been successfully formed and appears to provide an ionomer ionic linkage throughout the composite structure. Capacitance values of approximately 0.6 F/sq cm were obtained compared with 1 F/sq cm when a liquid electrolyte is used with the same configuration
Mechanical identification of hyperelastic anisotropic properties of mouse carotid arteries
International audienceThe role of mechanics is known to be of primary order in many arterial diseases; however determining mechanical properties of arteries remains a challenge. This paper discusses the identifiability of a Holzapfel-type material model for a mouse carotid artery, using an inverse method based on a finite element model and 3D digital image correlation measurements of the surface strain during an inflation/extension test. Layer-specific mean fiber angles are successfully determined using a five parameter constitutive model, demonstrating good robustness of the identification procedure. Importantly, we show that a model based on a single thick layer is unable to render the biaxial mechanical response of the artery tested here. On the contrary, difficulties related to the identification of a seven parameter constitutive model are evidenced; such a model leads to multiple solutions. Nevertheless, it is shown that an additional mechanical test, different in nature with the previous one, solves this proble
Mechanical identification of layer-specific properties of mouse carotid arteries using 3D-DIC and a hyperelastic anisotropic constitutive model
The role of mechanics is known to be of primary order in many arterial
diseases; however, determining mechanical properties of arteries remains a
challenge. This paper discusses the identifiability of the passive mechanical
properties of a mouse carotid artery, taking into account the orientation of
collagen fibres in the medial and adventitial layers. On the basis of 3D
digital image correlation measurements of the surface strain during an
inflation/extension test, an inverse identification method is set up. It
involves a 3D finite element mechanical model of the mechanical test and an
optimisation algorithm. A two-layer constitutive model derived from the
Holzapfel model is used, with five and then seven parameters. The
five-parameter model is successfully identified providing layer-specific fibre
angles. The seven-parameter model is over parameterised, yet it is shown that
additional data from a simple tension test make the identification of refined
layer-specific data reliable.Comment: PB-CMBBE-15.pd
Biomechanics of porcine renal arteries and role of axial stretch.
International audienceIt is known that arteries experience significant axial stretches in vivo. Several authors have shown that the axial force needed to maintain an artery at its in vivo axial stretch does not change with transient cyclical pressurization over normal ranges. However, the axial force phenomenon of arteries has never been explained with microstructural considerations. In this paper we propose a simple biomechanical model to relate the specific axial force phenomenon of arteries to the predicted load-dependent average collagen fiber orientation. It is shown that (a) the model correctly predicts the authors' experimentally measured biaxial behavior of pig renal arteries and (b) the model predictions are in agreement with additional experimental results reported in the literature. Finally, we discuss the implications of the model for collagen fiber orientation and deposition in arteries
End states, band gap, and dispersion
Angle-resolved two-photon photoemission and high-resolution electron energy
loss spectroscopy are employed to derive the electronic structure of a
subnanometer atomically precise quasi-one-dimensional graphene nanoribbon
(GNR) on Au(111). We resolved occupied and unoccupied electronic bands
including their dispersion and determined the band gap, which possesses an
unexpectedly large value of 5.1 eV. Supported by density functional theory
calculations for the idealized infinite polymer and finite size oligomers, an
unoccupied nondispersive electronic state with an energetic position in the
middle of the band gap of the GNR could be identified. This state resides at
both ends of the ribbon (end state) and is only found in the finite sized
systems, i.e., the oligomers
- …
