2 research outputs found

    The effects of a 12-Month weight loss intervention on cognitive outcomes in adults with overweight and obesity

    Get PDF
    Obesity is associated with poorer executive functioning and reward sensitivity. Yet, we know very little about whether weight loss through diet and/or increased exercise engagement improves cognitive function. This study evaluated whether weight loss following a dietary and exercise intervention was associated with improved cognitive performance. We enrolled 125 middle-aged adults with overweight and obesity (98 female) into a 12-month behavioral weight loss intervention. Participants were assigned to one of three groups: energy-restricted diet alone, an energy-restricted diet plus 150 min of moderate intensity exercise per week or an energy restricted diet plus 250 min of exercise per week. All participants completed tests measuring executive functioning and/or reward sensitivity, including the Iowa Gambling Task (IGT). Following the intervention, weight significantly decreased in all groups. A MANCOVA controlling for age, sex and race revealed a significant multivariate effect of group on cognitive changes. Post-hoc ANCOVAs revealed a Group x Time interaction only on IGT reward sensitivity, such that the high exercise group improved their performance relative to the other two intervention groups. Post-hoc ANCOVAs also revealed a main effect of Time, independent of intervention group, on IGT net payoff score. Changes in weight were not associated with other changes in cognitive performance. Engaging in a high amount of exercise improved reward sensitivity above and beyond weight loss alone. This suggests that there is additional benefit to adding exercise into behavioral weight loss regimens on executive functioning, even without additional benefit to weight loss

    Aerobic exercise, cardiorespiratory fitness, and the human hippocampus

    No full text
    The hippocampus is particularly susceptible to neurodegeneration. Physical activity, specifically increasing cardiorespiratory fitness via aerobic exercise, shows promise as a potential method for mitigating hippocampal decline in humans. Numerous studies have now investigated associations between the structure and function of the hippocampus and engagement in physical activity. Still, there remains continued debate and confusion about the relationship between physical activity and the human hippocampus. In this review, we describe the current state of the physical activity and exercise literature as it pertains to the structure and function of the human hippocampus, focusing on four magnetic resonance imaging measures: volume, diffusion tensor imaging, resting-state functional connectivity, and perfusion. We conclude that, despite significant heterogeneity in study methods, populations of interest, and scope, there are consistent positive findings, suggesting a promising role for physical activity in promoting hippocampal structure and function throughout the lifespan
    corecore