11,443 research outputs found
Thermal contraints on high-pressure granulite metamorphism of supracrustal rocks
The circumstances leading to the formation and exposure at the Earth's surface of supracrustal granulites are examined. These are defined as sediments, volcanics, and other rock units which originally formed at the surface of the Earth, were metamorphosed to high-pressure granulite facies (T = 700-900 C, P = 5-10 kbar), and reexposed at the Earth's surface, in many cases underlain by normal thicknesses of continental crust (30-40 km). Five possible heating mechanisms to account for granulite metamorphism of supracrustal rocks are discussed: magnetic heating, thermal relaxation of perturbed temperature profiles following underthrusting of the continental crust, thermal relaxation after underthrusting of thin slivers of supracrustal rocks below continental crust of normal thickness, major preheating of the upper plate, and shear heating caused by frictional stress along the thrust plane
STM Studies of Synthetic Peptide Monolayers
We have used scanning probe microscopy to investigate self-assembled
monolayers of chemically synthesized peptides. We find that the peptides form a
dense uniform monolayer, above which is found a sparse additional layer. Using
scanning tunneling microscopy, submolecular resolution can be obtained,
revealing the alpha helices which constitute the peptide. The nature of the
images is not significantly affected by the incorporation of redox cofactors
(hemes) in the peptides.Comment: 4 pages, 3 figures (4 gifs); to appear in the Proceedings of the
XIIth Int. Winterschool on Electronic Properties of Novel Materials
"Molecular Nanostructures", Kirchberg/Tyrol, Febr. 199
Consolidation of complex events via reinstatement in posterior cingulate cortex
It is well-established that active rehearsal increases the efficacy of memory consolidation. It is also known that complex events are interpreted with reference to prior knowledge. However, comparatively little attention has been given to the neural underpinnings of these effects. In healthy adult humans, we investigated the impact of effortful, active rehearsal on memory for events by showing people several short video clips and then asking them to recall these clips, either aloud (Experiment 1) or silently while in an MRI scanner (Experiment 2). In both experiments, actively rehearsed clips were remembered in far greater detail than unrehearsed clips when tested a week later. In Experiment 1, highly similar descriptions of events were produced across retrieval trials, suggesting a degree of semanticization of the memories had taken place. In Experiment 2, spatial patterns of BOLD signal in medial temporal and posterior midline regions were correlated when encoding and rehearsing the same video. Moreover, the strength of this correlation in the posterior cingulate predicted the amount of information subsequently recalled. This is likely to reflect a strengthening of the representation of the video's content. We argue that these representations combine both new episodic information and stored semantic knowledge (or "schemas"). We therefore suggest that posterior midline structures aid consolidation by reinstating and strengthening the associations between episodic details and more generic schematic information. This leads to the creation of coherent memory representations of lifelike, complex events that are resistant to forgetting, but somewhat inflexible and semantic-like in nature
IT Systems Implementation: Research Findings from the Public Sector
The National Health Service has embarked upon major initiatives to bring in management and financial information systems capable of relating resource usage to cost and to underpin better management and effective delivery of health care. This paper identifies a range of weaknesses and impending problem areas in implementation practice. Recent research evidence from several NHS regions is utilized to support the detailed case made for changes in how computer-based projects are developed, managed and implemented within the organization. It is suggested that the evidence and analysis would seem to have implications for all those studying, experiencing, or anticipating computerization
Direct, Non-Destructive Imaging of Magnetization in a Spin-1 Bose Gas
Polarization-dependent phase-contrast imaging is used to spatially resolve
the magnetization of an optically trapped ultracold gas. This probe is applied
to Larmor precession of degenerate and nondegenerate spin-1 Rb gases.
Transverse magnetization of the Bose-Einstein condensate persists for the
condensate lifetime, with a spatial response to magnetic field inhomogeneities
consistent with a mean-field model of interactions. Rotational symmetry implies
that the Larmor frequency of a spinor condensate be density-independent, and
thus suitable for precise magnetometry with high spatial resolution. In
comparison, the magnetization of the noncondensed gas decoheres rapidly.Comment: 4 pages, 4 figure
Single Impurity In Ultracold Fermi Superfluids
The role of impurities as experimental probes in the detection of quantum
material properties is well appreciated. Here we study the effect of a single
classical magnetic impurity in trapped ultracold Fermi superfluids. Depending
on its shape and strength, a magnetic impurity can induce single or multiple
mid-gap bound states in a superfluid Fermi gas. The multiple mid-gap states
could coincide with the development of a Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) phase within the superfluid. As an analog of the Scanning Tunneling
Microscope, we propose a modified RF spectroscopic method to measure the local
density of states which can be employed to detect these states and other
quantum phases of cold atoms. A key result of our self consistent Bogoliubov-de
Gennes calculations is that a magnetic impurity can controllably induce an FFLO
state at currently accessible experimental parameters.Comment: 5 pages, 3 figures; added calculations for 3
Dynamics of cholesteric structures in an electric field
Motivated by Lehmann-like rotation phenomena in cholesteric drops we study
the transverse drift of two types of cholesteric fingers, which form rotating
spirals in thin layers of cholesteric liquid crystal in an ac or dc electric
field. We show that electrohydrodynamic effects induced by Carr-Helfrich charge
separation or flexoelectric charge generation can describe the drift of
cholesteric fingers. We argue that the observed Lehmann-like phenomena can be
understood on the same basis.Comment: 4 pages, 4 figures, submitted to PR
- β¦