44 research outputs found
On Secure Workflow Decentralisation on the Internet
Decentralised workflow management systems are a new research area, where most
work to-date has focused on the system's overall architecture. As little
attention has been given to the security aspects in such systems, we follow a
security driven approach, and consider, from the perspective of available
security building blocks, how security can be implemented and what new
opportunities are presented when empowering the decentralised environment with
modern distributed security protocols. Our research is motivated by a more
general question of how to combine the positive enablers that email exchange
enjoys, with the general benefits of workflow systems, and more specifically
with the benefits that can be introduced in a decentralised environment. This
aims to equip email users with a set of tools to manage the semantics of a
message exchange, contents, participants and their roles in the exchange in an
environment that provides inherent assurances of security and privacy. This
work is based on a survey of contemporary distributed security protocols, and
considers how these protocols could be used in implementing a distributed
workflow management system with decentralised control . We review a set of
these protocols, focusing on the required message sequences in reviewing the
protocols, and discuss how these security protocols provide the foundations for
implementing core control-flow, data, and resource patterns in a distributed
workflow environment
Introducing cattle grazing to a noxious weed-dominated rangeland shifts plant communities
Invasive weed species in California's rangelands can reduce herbaceous diversity, forage quality and wildlife habitat. Small-scale studies (5 acres or fewer) have shown reductions of medusahead and yellow starthistle using prescribed grazing on rangelands, but little is published on the effects of pasture-scale (greater than 80 acres) prescribed grazing on weed control and plant community responses. We report the results of a 6-year collaborative study of manager-applied prescribed grazing implemented on rangeland that had not been grazed for 4 years. Grazing reduced medusahead but did not alter yellow starthistle cover. Medusahead reductions were only seen in years that did not have significant late spring rainfall, suggesting that it is able to recover from heavy grazing if soil moisture is present. Later season grazing appears to have the potential to suppress medusahead in all years. In practice, however, such grazing is constrained by livestock drinking water availability and forage quality, which were limited even in years with late spring rainfall. Thus, we expect that grazing treatments under real-world constraints would reduce medusahead only in years with little late spring rainfall. After 10 years of grazing exclusion, the ungrazed plant communities began to shift, replacing medusahead with species that have little value, such as ripgut and red brome
Fighting their last stand? A global analysis of the distribution and conservation status of gymnosperms
Aim: Gymnosperms are often described as a marginal and threatened group, members of which tend to be out-competed by angiosperms and which therefore preferentially persist at higher latitudes and elevations. The aim of our synthesis was to test these statements by investigating the global latitudinal and elevational distribution of gymnosperms, as well as their conservation status, using all extant gymnosperm groups (cycads, gnetophytes, ginkgophytes and conifers).Location: Worldwide.Methods: We developed a database of 1014 species of gymnosperms containing latitudinal and elevational distribution data, as well as their global conservation status, as described in the literature. The 1014 species comprised 305 cycads, 101 gnetophytes, the only living representative of ginkgophytes, and 607 conifers. Generalized additive models, frequency histograms, kernel density estimations and distribution maps based on Takhtajan's floristic regions were used.Results: Although the diversity of gymnosperms decreases at equatorial latitudes, approximately 50% of the extant species occur primarily between the tropics. More than 43% of gymnosperms can occur at very low elevations (≤ 200 m a.s.l.). Gymnosperms, considering all species together as well as their main taxonomic groups separately, do not exhibit a latitudinal diversity gradient as commonly observed for many other taxa. Gymnosperms, and especially conifers, are on average less threatened at higher and equatorial latitudes.Main conclusions: Gymnosperms display an unusual latitudinal diversity gradient, which we suggest cannot fully be accounted for by angiosperm dominance and competitive superiority. We hypothesize that other factors explain their present distribution, such as the development of centres of endemism in several regions and the adaptation of certain taxa to cold and arid climates
Simplicity in Visual Representation: A Semiotic Approach
Simplicity, as an ideal in the design of visual representations, has not received systematic attention. High-level guidelines are too general, and low-level guidelines too ad hoc, too numerous, and too often incompatible, to serve in a particular design situation. This paper reviews notions of visual simplicity in the literature within the analytical framework provided by Charles Morris' communication model, specifically, his trichotomy of communication levels—the syntactic, the semantic, and the pragmatic. Simplicity is ultimate ly shown to entail the adjudication of incompatibilities both within, and between, levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68281/2/10.1177_105065198700100103.pd
The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly
We have established that two homologous nucleoporins, Nup170p and Nup157p, play an essential role in the formation of nuclear pore complexes (NPCs) in Saccharomyces cerevisiae. By regulating their synthesis, we showed that the loss of these nucleoporins triggers a decrease in NPCs caused by a halt in new NPC assembly. Preexisting NPCs are ultimately lost by dilution as cells grow, causing the inhibition of nuclear transport and the loss of viability. Significantly, the loss of Nup170p/Nup157p had distinct effects on the assembly of different architectural components of the NPC. Nucleoporins (nups) positioned on the cytoplasmic face of the NPC rapidly accumulated in cytoplasmic foci. These nup complexes could be recruited into new NPCs after reinitiation of Nup170p synthesis, and may represent a physiological intermediate. Loss of Nup170p/Nup157p also caused core and nucleoplasmically positioned nups to accumulate in NPC-like structures adjacent to the inner nuclear membrane, which suggests that these nucleoporins are required for formation of the pore membrane and the incorporation of cytoplasmic nups into forming NPCs
The Yeast Nuclear Pore Complex and Transport Through It
Exchange of macromolecules between the nucleus and cytoplasm is a key regulatory event in the expression of a cell’s genome. This exchange requires a dedicated transport system: (1) nuclear pore complexes (NPCs), embedded in the nuclear envelope and composed of proteins termed nucleoporins (or “Nups”), and (2) nuclear transport factors that recognize the cargoes to be transported and ferry them across the NPCs. This transport is regulated at multiple levels, and the NPC itself also plays a key regulatory role in gene expression by influencing nuclear architecture and acting as a point of control for various nuclear processes. Here we summarize how the yeast Saccharomyces has been used extensively as a model system to understand the fundamental and highly conserved features of this transport system, revealing the structure and function of the NPC; the NPC’s role in the regulation of gene expression; and the interactions of transport factors with their cargoes, regulatory factors, and specific nucleoporins
Fetal Stomach Position Predicts Neonatal Outcomes in Isolated Left-Sided Congenital Diaphragmatic Hernia
INTRODUCTION: We sought to determine the relationship between degree of stomach herniation by antenatal sonography and neonatal outcomes in fetuses with isolated left-sided congenital diaphragmatic hernia (CDH). MATERIALS AND METHODS: We retrospectively reviewed neonatal medical records and antenatal sonography of fetuses with isolated left CDH cared for at a single institution (2000–2012). Fetal stomach position was classified on sonography as follows: intra-abdominal, anterior left chest, mid-to-posterior left chest, or retrocardiac (right chest). RESULTS: Ninety fetuses were included with 70% surviving to neonatal discharge. Stomach position was intra-abdominal in 14% (n=13), anterior left chest in 19% (n=17), mid-to-posterior left chest in 41% (n=37), and retrocardiac in 26% (n=23). Increasingly abnormal stomach position was linearly associated with an increased odds of death (OR 4.8, 95%CI 2.1–10.9), extracorporeal membrane oxygenation (ECMO) (OR 5.6, 95%CI 1.9–16.7), nonprimary diaphragmatic repair (OR 2.7, 95%CI 1.4–5.5), prolonged mechanical ventilation (OR 5.9, 95%CI 2.3–15.6), and prolonged respiratory support (OR 4.0, 95%CI 1.6–9.9). All fetuses with intra-abdominal stomach position survived without substantial respiratory morbidity or need for ECMO. DISCUSSION: Fetal stomach position is strongly associated with neonatal outcomes in isolated left CDH. This objective tool may allow for accurate prognostication in a variety of clinical settings