13 research outputs found

    DHCR24 exerts neuroprotection upon inflammation-induced neuronal death

    Get PDF
    Abstract Background DHCR24, involved in the de novo synthesis of cholesterol and protection of neuronal cells against different stress conditions, has been shown to be selectively downregulated in neurons of the affected brain areas in Alzheimer’s disease. Methods Here, we investigated whether the overexpression of DHCR24 protects neurons against inflammation-induced neuronal death using co-cultures of mouse embryonic primary cortical neurons and BV2 microglial cells upon acute neuroinflammation. Moreover, the effects of DHCR24 overexpression on dendritic spine density and morphology in cultured mature mouse hippocampal neurons and on the outcome measures of ischemia-induced brain damage in vivo in mice were assessed. Results Overexpression of DHCR24 reduced the loss of neurons under inflammation elicited by LPS and IFN-γ treatment in co-cultures of mouse neurons and BV2 microglial cells but did not affect the production of neuroinflammatory mediators, total cellular cholesterol levels, or the activity of proteins linked with neuroprotective signaling. Conversely, the levels of post-synaptic cell adhesion protein neuroligin-1 were significantly increased upon the overexpression of DHCR24 in basal growth conditions. Augmentation of DHCR24 also increased the total number of dendritic spines and the proportion of mushroom spines in mature mouse hippocampal neurons. In vivo, overexpression of DHCR24 in striatum reduced the lesion size measured by MRI in a mouse model of transient focal ischemia. Conclusions These results suggest that the augmentation of DHCR24 levels provides neuroprotection in acute stress conditions, which lead to neuronal loss in vitro and in vivo

    Astrocytes and Microglia as Potential Contributors to the Pathogenesis of C9orf72 Repeat Expansion-Associated FTLD and ALS

    Get PDF
    Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases with a complex, but often overlapping, genetic and pathobiological background and thus they are considered to form a disease spectrum. Although neurons are the principal cells affected in FTLD and ALS, increasing amount of evidence has recently proposed that other central nervous system-resident cells, including microglia and astrocytes, may also play roles in neurodegeneration in these diseases. Therefore, deciphering the mechanisms underlying the disease pathogenesis in different types of brain cells is fundamental in order to understand the etiology of these disorders. The major genetic cause of FTLD and ALS is a hexanucleotide repeat expansion (HRE) in the intronic region of the C9orf72 gene. In neurons, specific pathological hallmarks, including decreased expression of the C9orf72 RNA and proteins and generation of toxic RNA and protein species, and their downstream effects have been linked to C9orf72 HRE-associated FTLD and ALS. In contrast, it is still poorly known to which extent these pathological changes are presented in other brain cells. Here, we summarize the current literature on the potential role of astrocytes and microglia in C9orf72 HRE-linked FTLD and ALS and discuss their possible phenotypic alterations and neurotoxic mechanisms that may contribute to neurodegeneration in these diseases

    Expression of C9orf72 hexanucleotide repeat expansion leads to formation of RNA foci and dipeptide repeat proteins but does not influence autophagy or proteasomal function in neuronal cells

    No full text
    Abstract C9orf72 hexanucleotide repeat expansion (HRE) is the major genetic cause underpinning frontotemporal lobar degeneration (FLTD) and amyotrophic lateral sclerosis (ALS). C9orf72 HRE-associated pathogenesis involves both loss-of-function, through reduced C9orf72 levels, and gain-of-function mechanisms, including formation of RNA foci and generation of dipeptide repeat (DPR) proteins. In addition, dysfunctional protein degradation pathways, i.e. autophagy and ubiquitin-proteasome system (UPS), are suggested. Our aim was to study the gain-of-function mechanisms in the context of the function of protein degradation pathways as well as the regulation of the DPR proteins through these pathways. To this end, we expressed the pathological HRE in neuronal N2a cells and mouse primary cortical neurons. Protein degradation pathways were modulated to induce or block autophagy or to inhibit UPS. In addition, proteasomal activity was assessed. The C9orf72 HRE-expressing N2a cells and neurons were confirmed to produce RNA foci and DPR proteins, predominantly the Poly-GP proteins. However, the presence of these pathological hallmarks did not result in alterations in autophagy or proteasomal activity in either of the studied cell types. In N2a cells, Poly-GP proteins appeared in soluble forms and Lactacystin-mediated UPS inhibition increased their levels, indicating proteasomal regulation. Similar effects were not observed in cortical neurons, where the Poly-GP proteins formed also higher molecular weight forms. These results suggest a cell type-specific morphology and regulation of the DPR proteins. Further studies in other model systems may shed additional light onto the effects of the C9orf72 HRE on cellular protein degradation pathways and the regulation of the DPR protein levels

    C9orf72 proteins regulate autophagy and undergo autophagosomal or proteasomal degradation in a cell type-dependent manner

    No full text
    Abstract Dysfunctional autophagy or ubiquitin-proteasome system (UPS) are suggested to underlie abnormal protein aggregation in neurodegenerative diseases. Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS)-associated C9orf72 is implicated in autophagy, but whether it activates or inhibits autophagy is partially controversial. Here, we utilized knockdown or overexpression of C9orf72 in mouse N2a neuroblastoma cells or cultured neurons to elucidate the potential role of C9orf72 proteins in autophagy and UPS. Induction of autophagy in C9orf72 knockdown N2a cells led to decreased LC3BI to LC3BII conversion, p62 degradation, and formation of LC3-containing autophagosomes, suggesting compromised autophagy. Proteasomal activity was slightly decreased. No changes in autophagy nor proteasomal activity in C9orf72-overexpressing N2a cells were observed. However, in these cells, autophagy induction by serum starvation or rapamycin led to significantly decreased C9orf72 levels. The decreased levels of C9orf72 in serum-starved N2a cells were restored by the proteasomal inhibitor lactacystin, but not by the autophagy inhibitor bafilomycin A1 (BafA1) treatment. These data suggest that C9orf72 undergoes proteasomal degradation in N2a cells during autophagy. Lactacystin significantly elevated C9orf72 levels in N2a cells and neurons, further suggesting UPS-mediated regulation. In rapamycin and BafA1-treated neurons, C9orf72 levels were significantly increased. Altogether, these findings corroborate the previously suggested regulatory role for C9orf72 in autophagy and suggest cell type-dependent regulation of C9orf72 levels via UPS and/or autophagy

    Astrocytes and microglia as potential contributors to the pathogenesis of C9orf72 repeat expansion-associated FTLD and ALS

    Get PDF
    Abstract Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases with a complex, but often overlapping, genetic and pathobiological background and thus they are considered to form a disease spectrum. Although neurons are the principal cells affected in FTLD and ALS, increasing amount of evidence has recently proposed that other central nervous system-resident cells, including microglia and astrocytes, may also play roles in neurodegeneration in these diseases. Therefore, deciphering the mechanisms underlying the disease pathogenesis in different types of brain cells is fundamental in order to understand the etiology of these disorders. The major genetic cause of FTLD and ALS is a hexanucleotide repeat expansion (HRE) in the intronic region of the C9orf72 gene. In neurons, specific pathological hallmarks, including decreased expression of the C9orf72 RNA and proteins and generation of toxic RNA and protein species, and their downstream effects have been linked to C9orf72 HRE-associated FTLD and ALS. In contrast, it is still poorly known to which extent these pathological changes are presented in other brain cells. Here, we summarize the current literature on the potential role of astrocytes and microglia in C9orf72 HRE-linked FTLD and ALS and discuss their possible phenotypic alterations and neurotoxic mechanisms that may contribute to neurodegeneration in these diseases

    Deficient neurotransmitter systems and synaptic function in frontotemporal lobar degeneration:insights into disease mechanisms and current therapeutic approaches

    No full text
    Abstract Frontotemporal lobar degeneration (FTLD) comprises a heterogenous group of fatal neurodegenerative diseases and, to date, no validated diagnostic or prognostic biomarkers or effective disease-modifying therapies exist for the different clinical or genetic subtypes of FTLD. Current treatment strategies rely on the off-label use of medications for symptomatic treatment. Changes in several neurotransmitter systems including the glutamatergic, GABAergic, dopaminergic, and serotonergic systems have been reported in FTLD spectrum disease patients. Many FTLD-related clinical and neuropsychiatric symptoms such as aggressive and compulsive behaviour, agitation, as well as altered eating habits and hyperorality can be explained by disturbances in these neurotransmitter systems, suggesting that their targeting might possibly offer new therapeutic options for treating patients with FTLD. This review summarizes the present knowledge on neurotransmitter system deficits and synaptic dysfunction in model systems and patients harbouring the most common genetic causes of FTLD, the hexanucleotide repeat expansion in C9orf72 and mutations in the granulin (GRN) and microtubule-associated protein tau (MAPT) genes. We also describe the current pharmacological treatment options for FLTD that target different neurotransmitter systems

    C9orf72 hexanucleotide repeat expansion leads to altered neuronal and dendritic spine morphology and synaptic dysfunction

    No full text
    Abstract Frontotemporal lobar degeneration (FTLD) comprises a heterogenous group of progressive neurodegenerative syndromes. To date, no validated biomarkers or effective disease-modifying therapies exist for the different clinical or genetic subtypes of FTLD. The most common genetic cause underlying FTLD and amyotrophic lateral sclerosis (ALS) is a hexanucleotide repeat expansion in the C9orf72 gene (C9-HRE). FTLD is accompanied by changes in several neurotransmitter systems, including the glutamatergic, GABAergic, dopaminergic, and serotonergic systems and many clinical symptoms can be explained by disturbances in these systems. Here, we aimed to elucidate the effects of the C9-HRE on synaptic function, molecular composition of synapses, and dendritic spine morphology. We overexpressed the pathological C9-HRE in cultured E18 mouse primary hippocampal neurons and characterized the pathological, morphological, and functional changes by biochemical methods, confocal microscopy, and live cell calcium imaging. The C9-HRE-expressing neurons were confirmed to display the pathological RNA foci and DPR proteins. C9-HRE expression led to significant changes in dendritic spine morphologies, as indicated by decreased number of mushroom-type spines and increased number of stubby and thin spines, as well as diminished neuronal branching. These morphological changes were accompanied by concomitantly enhanced susceptibility of the neurons to glutamate-induced excitotoxicity as well as augmented and prolonged responses to excitatory stimuli by glutamate and depolarizing potassium chloride as compared to control neurons. Mechanistically, the hyperexcitation phenotype in the C9-HRE-expressing neurons was found to be underlain by increased activity of extrasynaptic GluN2B-containing N-methyl-d-aspartate (NMDA) receptors. Our results are in accordance with the idea suggesting that C9-HRE is associated with enhanced excitotoxicity and synaptic dysfunction. Thus, therapeutic interventions targeted to alleviate synaptic disturbances might offer efficient avenues for the treatment of patients with C9-HRE-associated FTLD

    FTLD patient–derived fibroblasts show defective mitochondrial function and accumulation of p62

    No full text
    Abstract Frontotemporal lobar degeneration (FTLD) is a clinically, genetically, and neuropathologically heterogeneous group of neurodegenerative syndromes, leading to progressive cognitive dysfunction and frontal and temporal atrophy. C9orf72 hexanucleotide repeat expansion (C9-HRE) is the most common genetic cause of FTLD, but pathogenic mechanisms underlying FTLD are not fully understood. Here, we compared cellular features and functional properties, especially related to protein degradation pathways and mitochondrial function, of FTLD patient–derived skin fibroblasts from C9-HRE carriers and non-carriers and healthy donors. Fibroblasts from C9-HRE carriers were found to produce RNA foci, but no dipeptide repeat proteins, and they showed unchanged levels of C9orf72 mRNA transcripts. The main protein degradation pathways, the ubiquitin–proteasome system and autophagy, did not show alterations between the fibroblasts from C9-HRE-carrying and non-carrying FTLD patients and compared to healthy controls. An increase in the number and size of p62-positive puncta was evident in fibroblasts from both C9-HRE carriers and non-carriers. In addition, several parameters of mitochondrial function, namely, basal and maximal respiration and respiration linked to ATP production, were significantly reduced in the FTLD patient–derived fibroblasts from both C9-HRE carriers and non-carriers. Our findings suggest that FTLD patient–derived fibroblasts, regardless of whether they carry the C9-HRE expansion, show unchanged proteasomal and autophagic function, but significantly impaired mitochondrial function and increased accumulation of p62 when compared to control fibroblasts. These findings suggest the possibility of utilizing FTLD patient–derived fibroblasts as a platform for biomarker discovery and testing of drugs targeted to specific cellular functions, such as mitochondrial respiration.

    BV-2 microglial cells overexpressing C9orf72 hexanucleotide repeat expansion produce DPR proteins and show normal functionality but no RNA foci

    No full text
    Abstract Hexanucleotide repeat expansion (HRE) in the chromosome 9 open-reading frame 72 (C9orf72) gene is the most common genetic cause underpinning frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). It leads to the accumulation of toxic RNA foci and various dipeptide repeat (DPR) proteins into cells. These C9orf72 HRE-specific hallmarks are abundant in neurons. So far, the role of microglia, the immune cells of the brain, in C9orf72 HRE-associated FTLD/ALS is unclear. In this study, we overexpressed C9orf72 HRE of a pathological length in the BV-2 microglial cell line and used biochemical methods and fluorescence imaging to investigate its effects on their phenotype, viability, and functionality. We found that BV-2 cells expressing the C9orf72 HRE presented strong expression of specific DPR proteins but no sense RNA foci. Transiently increased levels of cytoplasmic TAR DNA-binding protein 43 (TDP-43), slightly altered levels of p62 and lysosome-associated membrane protein (LAMP) 2A, and reduced levels of polyubiquitinylated proteins, but no signs of cell death were detected in HRE overexpressing cells. Overexpression of the C9orf72 HRE did not affect BV-2 cell phagocytic activity or response to an inflammatory stimulus, nor did it shift their RNA profile toward disease-associated microglia. These findings suggest that DPR proteins do not affect microglial cell viability or functionality in BV-2 cells. However, additional studies in other models are required to further elucidate the role of C9orf72 HRE in microglia
    corecore