1,062 research outputs found

    Anomalous Cosmic Rays: A Sample of Interstellar Matter

    Get PDF
    Anomalous cosmic rays are a sample of the neutral interstellar medium that has been accelerated to energies of ~1 to 50 MeV/nuc. A comparison of ^(22)Ne/^(20)Ne measurements from various sources implies that galactic cosmic rays with energies > 100 MeV/nuc are not simply an accelerated sample of the local interstellar medium

    Interstellar Mapping and Acceleration Probe (IMAP): A New NASA Mission

    Get PDF
    The Interstellar Mapping and Acceleration Probe (IMAP) is a revolutionary mission that simultaneously investigates two of the most important overarching issues in Heliophysics today: the acceleration of energetic particles and interaction of the solar wind with the local interstellar medium. While seemingly disparate, these are intimately coupled because particles accelerated in the inner heliosphere play critical roles in the outer heliospheric interaction. Selected by NASA in 2018, IMAP is planned to launch in 2024. The IMAP spacecraft is a simple sun-pointed spinner in orbit about the Sun-Earth L1 point. IMAP’s ten instruments provide a complete and synergistic set of observations to simultaneously dissect the particle injection and acceleration processes at 1 AU while remotely probing the global heliospheric interaction and its response to particle populations generated by these processes. In situ at 1 AU, IMAP provides detailed observations of solar wind electrons and ions; suprathermal, pickup, and energetic ions; and the interplanetary magnetic field. For the outer heliosphere interaction, IMAP provides advanced global observations of the remote plasma and energetic ions over a broad energy range via energetic neutral atom imaging, and precise observations of interstellar neutral atoms penetrating the heliosphere. Complementary observations of interstellar dust and the ultraviolet glow of interstellar neutrals further deepen the physical understanding from IMAP. IMAP also continuously broadcasts vital real-time space weather observations. Finally, IMAP engages the broader Heliophysics community through a variety of innovative opportunities. This paper summarizes the IMAP mission at the start of Phase A development

    Dominant g(9/2)^2 neutron configuration in the 4+1 state of 68Zn based on new g factor measurements

    Full text link
    The gg factor of the 41+4_1^+ state in 68^{68}Zn has been remeasured with improved energy resolution of the detectors used. The value obtained is consistent with the previous result of a negative gg factor thus confirming the dominant 0g9/20g_{9/2} neutron nature of the 41+4_1^+ state. In addition, the accuracy of the gg factors of the 21+2_1^+, 22+2_2^+ and 31−3_1^- states has been improved an d their lifetimes were well reproduced. New large-scale shell model calculations based on a 56^{56}Ni core and an 0f5/21pg9/20f_{5/2}1pg_{9/2} model space yield a theoretical value, g(41+)=+0.008g(4_1^+) = +0.008. Although the calculated value is small, it cannot fully explain the experimental value, g(41+)=−0.37(17)g(4_1^+) = -0.37(17). The magnitude of the deduced B(E2) of the 41+4_1^+ and 21+2_1^+ transition is, however, rather well described. These results demonstrate again the importance of gg factor measurements for nuclear structure determination s due to their specific sensitivity to detailed proton and neutron components in the nuclear wave functions.Comment: 7 pages, 3 figs, submitted to PL

    Cosmic ray neon, Wolf-Rayet stars, and the superbubble origin of galactic cosmic rays

    Get PDF
    The abundances of neon isotopes in the galactic cosmic rays (GCRs) are reported using data from the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE). We compare our ACE-CRIS data for neon and refractory isotope ratios, and data from other experiments, with recent results from two-component Wolf-Rayet (WR) models. The three largest deviations of GCR isotope ratios from solar-system ratios predicted by these models are indeed present in the GCRs. Since WR stars are evolutionary products of OB stars, and most OB stars exist in OB associations that form superbubbles, the good agreement of these data with WR models suggests that superbubbles are the likely source of at least a substantial fraction of GCRs.Comment: 22 pages, 6 figures Accepted for publication by Ap

    Geomagnetically Trapped Anomalous Cosmic Rays at Solar Minimum

    Get PDF
    The geomagnetically trapped a...r10malous cosmic rays have been monitored continuously by instrumentation on the SAMPEX satellite since its launch in mid-1992. With the approach of solar mimmum the intensity has been increasing along with that of the interplanetary anomalous cosmic ray source. We compare the time variations of the two components using data from the MAST instrument: describe improved measurements of the spatiaJ distribution of the trapped component, and discuss implications for the trapping and lifetime of the trapped component

    Short-period variability in the galactic cosmic ray intensity: High statistical resolution observations and interpretation around the time of a Forbush decrease in August 2006

    Get PDF
    On 20 August 2006 a Forbush decrease observed at Polar in the Earth's magnetosphere was also seen at the INTEGRAL spacecraft outside the magnetosphere during a very active time in the solar wind. High-resolution energetic particle data from ACE SIS, the Polar high-sensitivity telescope, and INTEGRAL's Ge detector saturation rate, which measures the galactic cosmic ray (GCR) background with a threshold of similar to 200 MeV, show similar, short-period GCR variations in and around the Forbush decrease. Focusing upon the GCR intensity within a 3-day interval from 19 August 2006 to 21 August 2006 reveals many intensity variations in the GCR on a variety of time scales and amplitudes. These intensity variations are greater than the 3 sigma error in all the data sets used. The fine structures in the GCR intensities along with the Forbush decrease are propagated outward from ACE to the Earth with very little change. The solar wind speed stays relatively constant during these periods, indicating that parcels of solar wind are transporting the GCR population outward in the heliosphere. This solar wind convection of GCR fine structure is observed for both increases and decreases in GCR intensity, and the fine structure increases and decreases are bracketed by solar wind magnetic field discontinuities associated with interplanetary coronal mass ejection (ICME) magnetosheath regions, clearly seen as discontinuous rotations of the field components at ACE and at Wind. Interestingly, the electron heat flux shows different flux tube connectivity also associated with the different regions of the ICME and magnetosheath. Gosling et al. (2004) first discussed the idea that solar energetic particle intensities commonly undergo dispersionless modulation in direct association with discontinuous changes in the solar wind electron strahl. The observations show that the intensity levels in the GCR flux may undergo a similar partitioning, possibly because of the different magnetic field regions having differing magnetic topologies

    On the Low Energy Decrease in Galactic Cosmic Ray Secondary/Primary Ratios

    Get PDF
    Galactic cosmic ray (GCR) secondary/primary ratios such as B/C and (Sc+Ti+V)/Fe are commonly used to determine the mean amount of interstellar material through which cosmic rays travel before escaping from the Galaxy (Λ_(esc)). These ratios are observed to be energy-dependent, with a relative maximum at ~1 GeV/nucleon, implying a corresponding peak in Λ_(esc). The decrease in Λ_(esc) at energies above 1 GeV/nucleon is commonly taken to indicate that higher energy cosmic rays escape more easily from the Galaxy. The decrease in Λ_(esc) at energies <1 GeV/nuc is more controversial; suggested possibilities include the effects of a galactic wind or the effects of distributed acceleration of cosmic rays as they pass through the interstellar medium. We consider two possible explanations for the low energy decrease in Λ_(esc) and attempt to fit the combined, high-resolution measurements of secondary/primary ratios from ~0.1 to 35 GeV/nuc made with the CRIS instrument on ACE and the C2 experiment on HEAO-3. The first possibility, which hypothesizes an additional, local component of low-energy cosmic rays that has passed through very little material, is found to have difficulty simultaneously accounting for the abundance of both B and the Fe-secondaries. The second possibility, suggested by Soutoul and Ptuskin, involves a new form for Λ_(esc) motivated by their diffusion-convection model of cosmic rays in the Galaxy. Their suggested form for Λ_(esc)(E) is found to provide an excellent fit to the combined ACE and HEAO data sets

    Cosmic-Ray Spectra in Interstellar Space

    Get PDF
    At energies below ~300 MeV/nuc our knowledge of cosmic-ray spectra outside the heliosphere is obscured by the energy loss that cosmic rays experience during transport through the heliosphere into the inner solar system. This paper compares measurements of secondary electron-capture isotope abundances and cosmic-ray spectra from ACE with a simple model of interstellar propagation and solar modulation in order to place limits on the range of interstellar spectra that are compatible with both sets of data

    Abundances and energy spectra of corotating interaction region heavy ions

    Get PDF
    We have surveyed He-Fe spectra for 41 Corotating Interaction Regions (CIRs) from 1998–2007 observed on ACE. The spectra are similar for all species, and have the form of broken power laws with the spectral break occurring at a few MeV/nucleon. Except for overabundances of He and Ne, the abundances are close to those of the solar wind. We find the rare isotope ^3He is enhanced in ~40% of the events. In individual CIRs the Fe/O ratio correlates strongly with the solar wind Fe/O ratio measured 2–4 days prior to the CIR passage. Taken together with previously reported observations of pick-up He^+ in CIRs, these observations provide evidence that CIRs are accelerated out of a suprathermal ion pool of heated solar wind ions, pick-up ions, and remnant suprathermal ions from impulsive solar energetic particle (SEP) events

    STEREO Observations of Energetic Neutral Hydrogen Atoms During the 2006 December 5 Solar Flare

    Get PDF
    We report the discovery of energetic neutral hydrogen atoms (ENAs) emitted during the X9 solar event of 2006 December 5. Beginning ~1 hr following the onset of this E79 flare, the Low Energy Telescopes (LETs) on both the STEREO A and B spacecraft observed a sudden burst of 1.6-15 MeV protons beginning hours before the onset of the main solar energetic particle event at Earth. More than 70% of these particles arrived from a longitude within ±10° of the Sun, consistent with the measurement resolution. The derived emission profile at the Sun had onset and peak times remarkably similar to the GOES soft X-ray profile and continued for more than an hour. The observed arrival directions and energy spectrum argue strongly that the particle events < 5 MeV were due to ENAs. To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. Possible origins for the production of ENAs in a large solar event are considered. We conclude that the observed ENAs were most likely produced in the high corona and that charge-transfer reactions between accelerated protons and partially stripped coronal ions are an important source of ENAs in solar events
    • 

    corecore