1,081 research outputs found

    Interstellar Mapping and Acceleration Probe (IMAP): A New NASA Mission

    Get PDF
    The Interstellar Mapping and Acceleration Probe (IMAP) is a revolutionary mission that simultaneously investigates two of the most important overarching issues in Heliophysics today: the acceleration of energetic particles and interaction of the solar wind with the local interstellar medium. While seemingly disparate, these are intimately coupled because particles accelerated in the inner heliosphere play critical roles in the outer heliospheric interaction. Selected by NASA in 2018, IMAP is planned to launch in 2024. The IMAP spacecraft is a simple sun-pointed spinner in orbit about the Sun-Earth L1 point. IMAP’s ten instruments provide a complete and synergistic set of observations to simultaneously dissect the particle injection and acceleration processes at 1 AU while remotely probing the global heliospheric interaction and its response to particle populations generated by these processes. In situ at 1 AU, IMAP provides detailed observations of solar wind electrons and ions; suprathermal, pickup, and energetic ions; and the interplanetary magnetic field. For the outer heliosphere interaction, IMAP provides advanced global observations of the remote plasma and energetic ions over a broad energy range via energetic neutral atom imaging, and precise observations of interstellar neutral atoms penetrating the heliosphere. Complementary observations of interstellar dust and the ultraviolet glow of interstellar neutrals further deepen the physical understanding from IMAP. IMAP also continuously broadcasts vital real-time space weather observations. Finally, IMAP engages the broader Heliophysics community through a variety of innovative opportunities. This paper summarizes the IMAP mission at the start of Phase A development

    A novel technique to infer ionic charge states of solar energetic particles

    Get PDF
    In some large solar energetic particle (SEP) events, the intensities of higher energy SEPs decay more rapidly than at lower energies. This energy dependence varies with particle species, as would be expected if the decay timescale depended on a rigidity-dependent diffusion mean free path. By comparing the decay timescales of carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, and iron, mean charge states are inferred for these (and other) elements in three SEP events between 1997 and 2002 at energies between 10 and 200 MeV nucleon−1. In a fourth event, upper limits for the charge states are inferred. The charge states of many different particle species are all consistent with a single source temperature; in two events in 1997 and 2002, the best-fit temperature is much higher than that of the corona, which could imply a contribution from solar flare material. However, comparison with lower energy iron charge states for the 1997 event implies that the observed high-energy charge state could also be understood as the result of stripping during shock acceleration in the corona

    Evolution of suprathermal seed particle and solar energetic particle abundances

    Get PDF
    We report on a survey of the composition of solar-wind suprathermal tails and solar energetic particles (SEPs) including data from 1998 to 2010, with a focus on 2007 to 2010. The start of solar cycle 24 included several SEP events that were unusually He-poor. We conclude that these He-poor events are more likely related to Q/M-dependent spectral variations than to seed-particle composition changes. We also find that the quiet-time suprathermal Fe/O ratio during the 2008-2009 solar-minimum was dramatically lower (Fe/O ≤ 0.01) than earlier due in part to very low solar activity, but also suggesting contributions from an oxygen-rich source of suprathermal ions of unknown origin

    Elemental and isotopic fractionation in 3He-rich solar energetic particle events

    Get PDF
    Using data from the Solar Isotope Spectrometer (SIS) on the Advanced Composition Explorer (ACE) mission, heavy ion composition measurements have been made in 26^3He-rich solar energetic particle (SEP) events that occurred between 1998 and 2004. Relative abundances of 13 elements from C through Ni have been investigated, as have the isotopic compositions of the elements Ne and Mg. We find a general tendency for the abundances to follow trends similar to those found in gradual SEP events, in which fractionation can be represented in the form of a power-law in Q/M. However several deviations from this pattern are noted that may provide useful diagnostics of the acceleration process occurring in solar flares

    Integrated diagnostic pathway for patients referred with suspected OSA: a model for collaboration across the primary-secondary care interface

    Get PDF
    BACKGROUND: Obstructive sleep apnoea (OSA) presents a major healthcare challenge with current UK data suggesting that only 22% of individuals have been diagnosed and treated. Promoting awareness and improving access to diagnostics are fundamental in addressing these missing cases and the recognised complications associated with untreated OSA. Diagnosis usually occurs in secondary care with data from our trust revealing long wait times to undertake tests, reach a diagnosis and start treatment. This places a considerable time and emotional burden on the patient and a financial and logistical burden on the hospital. METHODS: We introduced an integrated community-based pathway for the diagnosis of OSA. This comprised a monthly clinic run from within a local general practice (GP) supported by a 'virtual multidisciplinary team' run by the hospital specialist team. Prospective collection of process, outcome and patient satisfaction data was compared with traditional hospital-based pathway data collected retrospectively. SETTING: A central London teaching hospital and GPs within a local commissioning neighbourhood. RESULTS: Between January 2018 and February 2019, 70 were patients referred and managed along the community pathway. Compared with the hospital pathway, data demonstrated a significant reduction in the time taken: from referral to perform a sleep test (29 vs 181 days, p<0.0001), to make a diagnosis (40 vs 230 days, p<0.0001) and commence treatment (127 vs 267, p<0.0001). Patient satisfaction in the community pathway was higher across all domains (p<0.05), fewer hospital outpatient appointments were required and cost estimates suggested an overall saving of up to £290 could be achieved for each patient. CONCLUSION: An integrated community-based pathway results in more timely diagnosis of OSA within a local setting while maintaining specialist input from the hospital team. It is favoured by patients and can reduce unnecessary appointments in secondary care

    Heavy-ion Fractionation in the Impulsive Solar Energetic Particle Event of 2002 August 20: Elements, Isotopes, and Inferred Charge States

    Get PDF
    Measurements of heavy-ion elemental and isotopic composition in the energy range ~12-60 MeV nucleon^(–1) are reported from the Advanced Composition Explorer/Solar Isotope Spectrometer (ACE/SIS) instrument for the solar energetic particle (SEP) event of 2002 August 20. We investigate fractionation in this particularly intense impulsive event by examining the enhancements of elemental and isotopic abundance ratios relative to corresponding values in the solar wind. The elemental enhancement pattern is similar to those in other impulsive events detected by ACE/SIS and in compilations of average impulsive-event composition. For individual elements, the abundance of a heavy isotope (mass M_2) is enhanced relative to that of a lighter isotope (M_1) by a factor ~(M_(1)/M_2)^α with α ≃ 15. Previous studies have reported elemental abundance enhancements organized as a power law in Q/M, the ratio of estimated ionic charge to mass in the material being fractionated. We consider the possibility that a fractionation law of this form could be responsible for the isotopic fractionation as a power law in the mass ratio and then explore the implications it would have for the ionic charge states in the source material. Assuming that carbon is fully stripped (Q_C = 6), we infer mean values of the ionic charge during the fractionation process, Q_Z , for a variety of elements with atomic numbers 7 ≤ Z ≤ 28. We find that Q_(Fe) ≃ 21-22, comparable to the highest observed values that have been reported at lower energies in impulsive SEP events from direct measurements near 1 AU. The inferred charge states as a function of Z are characterized by several step increases in the number of attached electrons, Z – Q_Z . We discuss how this step structure, together with the known masses of the elements, might account for a variety of features in the observed pattern of elemental abundance enhancements. We also briefly consider alternative fractionation laws and the relationship between the charge states we infer in the source material and those derived from in situ observations

    Geomagnetically Trapped Anomalous Cosmic Rays at Solar Minimum

    Get PDF
    The geomagnetically trapped a...r10malous cosmic rays have been monitored continuously by instrumentation on the SAMPEX satellite since its launch in mid-1992. With the approach of solar mimmum the intensity has been increasing along with that of the interplanetary anomalous cosmic ray source. We compare the time variations of the two components using data from the MAST instrument: describe improved measurements of the spatiaJ distribution of the trapped component, and discuss implications for the trapping and lifetime of the trapped component

    Moral Distress in Critical Care Nursing: The State of the Science

    Get PDF
    Background: Moral distress is a complex phenomenon frequently experienced by critical care nurses. Ethical conflicts in this practice area are related to technological advancement, high intensity work environments, and end-of-life decisions. Objectives: An exploration of contemporary moral distress literature was undertaken to determine measurement, contributing factors, impact, and interventions. Review Methods: This state of the science review focused on moral distress research in critical care nursing from 2009 to 2015, and included 12 qualitative, 24 quantitative, and 6 mixed methods studies. Results: Synthesis of the scientific literature revealed inconsistencies in measurement, conflicting findings of moral distress and nurse demographics, problems with the professional practice environment, difficulties with communication during end-of-life decisions, compromised nursing care as a consequence of moral distress, and few effective interventions. Conclusion: Providing compassionate care is a professional nursing value and an inability to meet this goal due to moral distress may have devastating effects on care quality. Further study of patient and family outcomes related to nurse moral distress is recommended

    Dominant g(9/2)^2 neutron configuration in the 4+1 state of 68Zn based on new g factor measurements

    Full text link
    The gg factor of the 41+4_1^+ state in 68^{68}Zn has been remeasured with improved energy resolution of the detectors used. The value obtained is consistent with the previous result of a negative gg factor thus confirming the dominant 0g9/20g_{9/2} neutron nature of the 41+4_1^+ state. In addition, the accuracy of the gg factors of the 21+2_1^+, 22+2_2^+ and 31−3_1^- states has been improved an d their lifetimes were well reproduced. New large-scale shell model calculations based on a 56^{56}Ni core and an 0f5/21pg9/20f_{5/2}1pg_{9/2} model space yield a theoretical value, g(41+)=+0.008g(4_1^+) = +0.008. Although the calculated value is small, it cannot fully explain the experimental value, g(41+)=−0.37(17)g(4_1^+) = -0.37(17). The magnitude of the deduced B(E2) of the 41+4_1^+ and 21+2_1^+ transition is, however, rather well described. These results demonstrate again the importance of gg factor measurements for nuclear structure determination s due to their specific sensitivity to detailed proton and neutron components in the nuclear wave functions.Comment: 7 pages, 3 figs, submitted to PL
    • …
    corecore