2 research outputs found

    Seven Compounds from Turmeric Essential Oil Inhibit Three Key Proteins Involved in SARS-CoV-2 Cell Entry and Replication in silico

    No full text
    Introduction: Turmeric rhizome (Cucurma longa L.) has showed great potential as a traditional drug in folk medicine of several countries. In light of the prominent use of turmeric rhizome in treating both respiratory and viral diseases, we aimed to dock major compounds from the essential oil of turmeric against three key proteins involved in COVID-19 cell entry and replication. Methods: The essential oil of turmeric rhizome was obtained using a hydrodistillation technique, and the chemical characterization of the oil was investigated using GC-MS/GC-FID. Then, main compounds were docked with the key proteins of COVID-19. Results: A total of 26 components were identified in the essential oil extracted from the rhizomes via GC-MS/GC-FID. Seven dominant compounds (turmerone (31.4%), ar-turmerone (16.1%), turmerol (14.6%), terpinolene (11.0%), α-zingiberene (5.2%), β-sesquiphellandrene (4.8%), and β-caryophyllene (3.5%)) were docked against COVID-19 main protease, papain-like protease (PLpro), spike protein and 3C-like protease (3CLpro), and the best inhibitor was picked according to the calculated binding affinity and non-bonding interactions with the protein active site. β-sesquiphellandrene and α-zingiberene showed highest besides the same binding affinity towards COVID-19 virus (-6.38 and -6.39kcal/mol, respectively). α-zingiberene was found to bind at the active site of the COVID-19 protein and interacted with different non-bonding interactions, while turmerol showed the highest affinity (-5.78kcal/mol) against CLpro enzyme by binding with Met165, Leu141, Met49, Ser144, Cys145, and Glu166 residues. Conclusion: The essential oil of turmeric harbors a blend of potentially bioactive compounds that may be considered as a good target against COVID-19 virus and warrants further experimental studies
    corecore