3 research outputs found
Adiabatic radio frequency potentials for the coherent manipulation of matter waves
Adiabatic dressed state potentials are created when magnetic sub-states of
trapped atoms are coupled by a radio frequency field. We discuss their
theoretical foundations and point out fundamental advantages over potentials
purely based on static fields. The enhanced flexibility enables one to
implement numerous novel configurations, including double wells, Mach-Zehnder
and Sagnac interferometers which even allows for internal state-dependent atom
manipulation. These can be realized using simple and highly integrated wire
geometries on atom chips.Comment: 13 pages, 2 figure
Highly versatile atomic micro traps generated by multifrequency magnetic field modulation
We propose the realization of custom-designed adiabatic potentials for cold
atoms based on multimode radio frequency radiation in combination with static
inhomogeneous magnetic fields. For example, the use of radio frequency combs
gives rise to periodic potentials acting as gratings for cold atoms. In strong
magnetic field gradients the lattice constant can be well below 1 micrometer.
By changing the frequencies of the comb in time the gratings can easily be
propagated in space, which may prove useful for Bragg scattering atomic matter
waves. Furthermore, almost arbitrarily shaped potential are possible such as
disordered potentials on a scale of several 100 nm or lattices with a spatially
varying lattice constant. The potentials can be made state selective and, in
the case of atomic mixtures, also species selective. This opens new
perspectives for generating tailored quantum systems based on ultra cold single
atoms or degenerate atomic and molecular quantum gases.Comment: 12 pages, 6 figure