9 research outputs found

    Haptoglobin improves shock, lung injury, and survival in canine pneumonia

    Get PDF
    During the last half-century, numerous antiinflammatory agents were tested in dozens of clinical trials and have proven ineffective for treating septic shock. The observation in multiple studies that cell-free hemoglobin (CFH) levels are elevated during clinical sepsis and that the degree of increase correlates with higher mortality suggests an alternative approach. Human haptoglobin binds CFH with high affinity and, therefore, can potentially reduce iron availability and oxidative activity. CFH levels are elevated over approximately 24-48 hours in our antibiotic-treated canine model of S. aureus pneumonia that simulates the cardiovascular abnormalities of human septic shock. In this 96-hour model, resuscitative treatments, mechanical ventilation, sedation, and continuous care are translatable to management in human intensive care units. We found, in this S. aureus pneumonia model inducing septic shock, that commercial human haptoglobin concentrate infusions over 48-hours bind canine CFH, increase CFH clearance, and lower circulating iron. Over the 96-hour study, this treatment was associated with an improved metabolic profile (pH, lactate), less lung injury, reversal of shock, and increased survival. Haptoglobin binding compartmentalized CFH to the intravascular space. This observation, in combination with increasing CFHs clearance, reduced available iron as a potential source of bacterial nutrition while decreasing the ability for CFH and iron to cause extravascular oxidative tissue injury. In contrast, haptoglobin therapy had no measurable antiinflammatory effect on elevations in proinflammatory C-reactive protein and cytokine levels. Haptoglobin therapy enhances normal host defense mechanisms in contrast to previously studied antiinflammatory sepsis therapies, making it a biologically plausible novel approach to treat septic shock

    Randomized Dose-Ranging Controlled Trial of AQ-13, a Candidate Antimalarial, and Chloroquine in Healthy Volunteers

    Get PDF
    OBJECTIVES: To determine: (1) the pharmacokinetics and safety of an investigational aminoquinoline active against multidrug–resistant malaria parasites (AQ-13), including its effects on the QT interval, and (2) whether it has pharmacokinetic and safety profiles similar to chloroquine (CQ) in humans. DESIGN: Phase I double-blind, randomized controlled trials to compare AQ-13 and CQ in healthy volunteers. Randomizations were performed at each step after completion of the previous dose. SETTING: Tulane–Louisiana State University–Charity Hospital General Clinical Research Center in New Orleans. PARTICIPANTS: 126 healthy adults 21–45 years of age. INTERVENTIONS: 10, 100, 300, 600, and 1,500 mg oral doses of CQ base in comparison with equivalent doses of AQ-13. OUTCOME MEASURES: Clinical and laboratory adverse events (AEs), pharmacokinetic parameters, and QT prolongation. RESULTS: No hematologic, hepatic, renal, or other organ toxicity was observed with AQ-13 or CQ at any dose tested. Headache, lightheadedness/dizziness, and gastrointestinal (GI) tract–related symptoms were the most common AEs. Although symptoms were more frequent with AQ-13, the numbers of volunteers who experienced symptoms with AQ-13 and CQ were similar (for AQ-13 and CQ, respectively: headache, 17/63 and 10/63, p = 0.2; lightheadedness/dizziness, 11/63 and 8/63, p = 0.6; GI symptoms, 14/63 and 13/63; p = 0.9). Both AQ-13 and CQ exhibited linear pharmacokinetics. However, AQ-13 was cleared more rapidly than CQ (respectively, median oral clearance 14.0–14.7 l/h versus 9.5–11.3 l/h; p ≀ 0.03). QTc prolongation was greater with CQ than AQ-13 (CQ: mean increase of 28 ms; 95% confidence interval [CI], 18 to 38 ms, versus AQ-13: mean increase of 10 ms; 95% CI, 2 to 17 ms; p = 0.01). There were no arrhythmias or other cardiac AEs with either AQ-13 or CQ. CONCLUSIONS: These studies revealed minimal differences in toxicity between AQ-13 and CQ, and similar linear pharmacokinetics

    Haptoglobin therapy has differential effects depending on severity of canine septic shock and cell‐free hemoglobin level

    Full text link
    BackgroundDuring sepsis, higher plasma cell-free hemoglobin (CFH) levels portend worse outcomes. In sepsis models, plasma proteins that bind CFH improve survival. In our canine antibiotic-treated Staphylococcus aureus pneumonia model, with and without red blood cell (RBC) exchange transfusion, commercial human haptoglobin (Hp) concentrates bound and compartmentalized CFH intravascularly, increased CFH clearance, and lowered iron levels, improving shock, lung injury, and survival. We now investigate in our model how very high CFH levels and treatment time affect Hp's beneficial effects.Materials and methodsTwo separate canine pneumonia sepsis Hp studies were undertaken: one with exchange transfusion of RBCs after prolonged storage to raise CFH to very high levels and another with rapidly lethal sepsis alone to shorten time to treat. All animals received continuous standard intensive care unit supportive care for 96 hours.ResultsOlder RBCs markedly elevated plasma CFH levels and, when combined with Hp therapy, created supraphysiologic CFH-Hp complexes that did not increase CFH or iron clearance or improve lung injury and survival. In a rapidly lethal bacterial challenge model without RBC transfusion, Hp binding did not increase clearance of complexes or iron or show benefits seen previously in the less lethal model.DiscussionHigh-level CFH-Hp complexes may impair clearance mechanisms and eliminate Hp's beneficial effect during sepsis. Rapidly lethal sepsis narrows the therapeutic window for CFH and iron clearance, also decreasing Hp's beneficial effects. In designing clinical trials, dosing and kinetics may be critical factors if Hp infusion is used to treat sepsis
    corecore