13 research outputs found
Relationships of Biomass-Burning Aerosols to Ice in Orographic Wave Clouds
Ice concentrations in orographic wave clouds at temperatures between −24° and −29°C were shown to be related to aerosol characteristics in nearby clear air during five research flights over the Rocky Mountains. When clouds with influence from colder temperatures were excluded from the dataset, mean ice nuclei and cloud ice number concentrations were very low, on the order of 1–5 L^(−1). In this environment, ice number concentrations were found to be significantly correlated with the number concentration of larger particles, those larger than both 0.1- and 0.5-μm diameter. A variety of complementary techniques was used to measure aerosol size distributions and chemical composition. Strong correlations were also observed between ice concentrations and the number concentrations of soot and biomass-burning aerosols. Ice nuclei concentrations directly measured in biomass-burning plumes were the highest detected during the project. Taken together, this evidence indicates a potential role for biomass-burning aerosols in ice formation, particularly in regions with relatively low concentrations of other ice nucleating aerosols
Physicochemical characterization and genotoxicity of the broad class of carbon nanotubes and nanofibers used or produced in US facilities
Background Carbon nanotubes and nanofibers (CNT/F) have known toxicity but simultaneous comparative studies of the broad material class, especially those with a larger diameter, with computational analyses linking toxicity to their fundamental material characteristics was lacking. It was unclear if all CNT/F confer similar toxicity, in particular, genotoxicity. Nine CNT/F (MW #1-7 and CNF #1-2), commonly found in exposure assessment studies of U.S. facilities, were evaluated with reported diameters ranging from 6 to 150 nm. All materials were extensively characterized to include distributions of physical dimensions and prevalence of bundled agglomerates. Human bronchial epithelial cells were exposed to the nine CNT/F (0-24 mu g/ml) to determine cell viability, inflammation, cellular oxidative stress, micronuclei formation, and DNA double-strand breakage. Computational modeling was used to understand various permutations of physicochemical characteristics and toxicity outcomes. Results Analyses of the CNT/F physicochemical characteristics illustrate that using detailed distributions of physical dimensions provided a more consistent grouping of CNT/F compared to using particle dimension means alone. In fact, analysis of binning of nominal tube physical dimensions alone produced a similar grouping as all characterization parameters together. All materials induced epithelial cell toxicity and micronuclei formation within the dose range tested. Cellular oxidative stress, DNA double strand breaks, and micronuclei formation consistently clustered together and with larger physical CNT/F dimensions and agglomerate characteristics but were distinct from inflammatory protein changes. Larger nominal tube diameters, greater lengths, and bundled agglomerate characteristics were associated with greater severity of effect. The portion of tubes with greater nominal length and larger diameters within a sample was not the majority in number, meaning a smaller percentage of tubes with these characteristics was sufficient to increase toxicity. Many of the traditional physicochemical characteristics including surface area, density, impurities, and dustiness did not cluster with the toxicity outcomes. Conclusion Distributions of physical dimensions provided more consistent grouping of CNT/F with respect to toxicity outcomes compared to means only. All CNT/F induced some level of genotoxicity in human epithelial cells. The severity of toxicity was dependent on the sample containing a proportion of tubes with greater nominal lengths and diameters
Recommended from our members
Relationships of Biomass-Burning Aerosols to Ice in Orographic Wave Clouds
Ice concentrations in orographic wave clouds at temperatures between −24° and −29°C were shown to be related to aerosol characteristics in nearby clear air during five research flights over the Rocky Mountains. When clouds with influence from colder temperatures were excluded from the dataset, mean ice nuclei and cloud ice number concentrations were very low, on the order of 1–5 L⁻¹. In this environment, ice number concentrations were found to be significantly correlated with the number concentration of larger particles, those larger than both 0.1- and 0.5-μm diameter. A variety of complementary techniques was used to measure aerosol size distributions and chemical composition. Strong correlations were also observed between ice concentrations and the number concentrations of soot and biomass-burning aerosols. Ice nuclei concentrations directly measured in biomass-burning plumes were the highest detected during the project. Taken together, this evidence indicates a potential role for biomass-burning aerosols in ice formation, particularly in regions with relatively low concentrations of other ice nucleating aerosols.Keywords: Aerosols, Orographic effects, Wave clouds, Biosphere-atmosphere interactio
Elevated Concentrations of Lead in Particulate Matter on the Neighborhood-Scale in Delhi, India As Determined by Single Particle Analysis
High mass concentrations of atmospheric lead particles are frequently observed in the Delhi, India metropolitan area, although the sources of lead particles are poorly understood. In this study, particles sampled across Delhi (August - December 2008) were analyzed by computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy (CCSEM-EDX) to improve our understanding of the spatial and physicochemical variability of lead-rich particles (>90% lead). The mean mass concentration of lead-rich particles smaller than 10 μm (PM10) was 0.7 μg/m(3) (1.5 μg/m(3) std. dev.) with high variability (range: 0-6.2 μg/m(3)). Four samples (16% of 25 samples) with PM10 lead-rich particle concentrations >1.4 μg/m(3) were defined as lead events and studied further. The temporal characteristics, heterogeneous spatial distribution, and wind patterns of events, excluded regional monsoon conditions or common anthropogenic sources from being the major causes of the lead events. Individual particle composition, size, and morphology analysis indicate informal recycling operations of used lead-acid batteries as the likely source of the lead events. This source is not typically included in emission inventories, and the observed isolated hotspots with high lead concentrations could represent an elevated exposure risk in certain neighborhoods of Delhi
Elemental and morphological analyses of filter tape deposits from a beta attenuation monitor
An hourly average PM10 concentration of 1402 mu g m(-3) was registered at 1400 Pacific Standard Time (PST), 1/11/2007, on the beta attenuation monitor (BAM) at a North Las Vegas, Nevada sampling site. The high PM10 concentration at similar to 1245-similar to 1331 PST was a microscale event, limited strictly to the PM10 sampler; it did not affect the adjacent PM2.5 concentrations. A method was developed for retrospective compositional analysis of BAM glass-fiber filter tape sample deposits. Sample punches were submitted for optical examination, followed by elemental and morphological analyses with X-ray fluorescence (XRF) and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDS) analyses, respectively. Geological samples surrounding the sampling site were acquired to establish source profiles and identify source markers. Although blank levels for many elements were high on the glass-fiber filter tape from the BAM, they were consistent enough to allow background subtraction from the deposit concentrations for most chemical components. Chemical mass balance (CMB) receptor model source apportionment for the event closely matched the paved road dust sample collected adjacent to the sampling site. It is likely that this high mass event was the result of environmental vandalism. This study demonstrates the feasibility of analyzing BAM filter tape deposits for source attribution, especially for short-duration fugitive dust events. Filter tapes should be time-stamped and immediately retained after an event for future analysis.</p