215 research outputs found

    Vector Addition System Reversible Reachability Problem

    Full text link
    The reachability problem for vector addition systems is a central problem of net theory. This problem is known to be decidable but the complexity is still unknown. Whereas the problem is EXPSPACE-hard, no elementary upper bounds complexity are known. In this paper we consider the reversible reachability problem. This problem consists to decide if two configurations are reachable one from each other, or equivalently if they are in the same strongly connected component of the reachability graph. We show that this problem is EXPSPACE-complete. As an application of the introduced materials we characterize the reversibility domains of a vector addition system

    Reachability in Vector Addition Systems is Primitive-Recursive in Fixed Dimension

    Full text link
    The reachability problem in vector addition systems is a central question, not only for the static verification of these systems, but also for many inter-reducible decision problems occurring in various fields. The currently best known upper bound on this problem is not primitive-recursive, even when considering systems of fixed dimension. We provide significant refinements to the classical decomposition algorithm of Mayr, Kosaraju, and Lambert and to its termination proof, which yield an ACKERMANN upper bound in the general case, and primitive-recursive upper bounds in fixed dimension. While this does not match the currently best known TOWER lower bound for reachability, it is optimal for related problems

    Least Significant Digit First Presburger Automata

    Full text link
    Since 1969 \cite{C-MST69,S-SMJ77}, we know that any Presburger-definable set \cite{P-PCM29} (a set of integer vectors satisfying a formula in the first-order additive theory of the integers) can be represented by a state-based symmbolic representation, called in this paper Finite Digit Vector Automata (FDVA). Efficient algorithms for manipulating these sets have been recently developed. However, the problem of deciding if a FDVA represents such a set, is a well-known hard problem first solved by Muchnik in 1991 with a quadruply-exponential time algorithm. In this paper, we show how to determine in polynomial time whether a FDVA represents a Presburger-definable set, and we provide in this positive case a polynomial time algorithm that constructs a Presburger-formula that defines the same set

    The Reachability Problem for Petri Nets is Not Elementary

    Get PDF
    Petri nets, also known as vector addition systems, are a long established model of concurrency with extensive applications in modelling and analysis of hardware, software and database systems, as well as chemical, biological and business processes. The central algorithmic problem for Petri nets is reachability: whether from the given initial configuration there exists a sequence of valid execution steps that reaches the given final configuration. The complexity of the problem has remained unsettled since the 1960s, and it is one of the most prominent open questions in the theory of verification. Decidability was proved by Mayr in his seminal STOC 1981 work, and the currently best published upper bound is non-primitive recursive Ackermannian of Leroux and Schmitz from LICS 2019. We establish a non-elementary lower bound, i.e. that the reachability problem needs a tower of exponentials of time and space. Until this work, the best lower bound has been exponential space, due to Lipton in 1976. The new lower bound is a major breakthrough for several reasons. Firstly, it shows that the reachability problem is much harder than the coverability (i.e., state reachability) problem, which is also ubiquitous but has been known to be complete for exponential space since the late 1970s. Secondly, it implies that a plethora of problems from formal languages, logic, concurrent systems, process calculi and other areas, that are known to admit reductions from the Petri nets reachability problem, are also not elementary. Thirdly, it makes obsolete the currently best lower bounds for the reachability problems for two key extensions of Petri nets: with branching and with a pushdown stack.Comment: Final version of STOC'1

    On the Home-Space Problem for Petri Nets and its Ackermannian Complexity

    Full text link
    A set of configurations H is a home-space for a set of configurations X of a Petri net if every configuration reachable from (any configuration in) X can reach (some configuration in) H. The semilinear home-space problem for Petri nets asks, given a Petri net and semilinear sets of configurations X, H, if H is a home-space for X. In 1989, David de Frutos Escrig and Colette Johnen proved that the problem is decidable when X is a singleton and H is a finite union of linear sets with the same periods. In this paper, we show that the general (semilinear) problem is decidable. This result is obtained by proving a duality between the reachability problem and the non-home-space problem. In particular, we prove that for any Petri net and any semilinear set of configurations H we can effectively compute a semilinear set C of configurations, called a non-reachability core for H, such that for every set X the set H is not a home-space for X if, and only if, C is reachable from X. We show that the established relation to the reachability problem yields the Ackermann-completeness of the (semilinear) home-space problem. For this we also show that, given a Petri net with an initial marking, the set of minimal reachable markings can be constructed in Ackermannian time

    Reachability in Two-Dimensional Vector Addition Systems with States: One Test is for Free

    Full text link
    Vector addition system with states is an ubiquitous model of computation with extensive applications in computer science. The reachability problem for vector addition systems is central since many other problems reduce to that question. The problem is decidable and it was recently proved that the dimension of the vector addition system is an important parameter of the complexity. In fixed dimensions larger than two, the complexity is not known (with huge complexity gaps). In dimension two, the reachability problem was shown to be PSPACE-complete by Blondin et al. in 2015. We consider an extension of this model, called 2-TVASS, where the first counter can be tested for zero. This model naturally extends the classical model of one counter automata (OCA). We show that reachability is still solvable in polynomial space for 2-TVASS. As in the work Blondin et al., our approach relies on the existence of small reachability certificates obtained by concatenating polynomially many cycles.Comment: Full version of the paper with the same title and authors in the proceedings of CONCUR 202

    Reachability Analysis of Communicating Pushdown Systems

    Full text link
    The reachability analysis of recursive programs that communicate asynchronously over reliable FIFO channels calls for restrictions to ensure decidability. Our first result characterizes communication topologies with a decidable reachability problem restricted to eager runs (i.e., runs where messages are either received immediately after being sent, or never received). The problem is EXPTIME-complete in the decidable case. The second result is a doubly exponential time algorithm for bounded context analysis in this setting, together with a matching lower bound. Both results extend and improve previous work from La Torre et al

    Decomposition of Decidable First-Order Logics over Integers and Reals

    Full text link
    We tackle the issue of representing infinite sets of real- valued vectors. This paper introduces an operator for combining integer and real sets. Using this operator, we decompose three well-known logics extending Presburger with reals. Our decomposition splits a logic into two parts : one integer, and one decimal (i.e. on the interval [0,1]). We also give a basis for an implementation of our representation

    Structural Presburger digit vector automata

    Get PDF
    International audienceThe least significant digit first decomposition of integer vectors into words of digit vectors provides a natural way for representing sets of integer vectors by automata. In this paper, the minimal automata representing Presburger sets are proved structurally Presburger: automata obtained by moving the initial state and replacing the accepting condition represent Presburger sets
    corecore