5 research outputs found

    Interaction potential between dynamic dipoles: polarized excitons in strong magnetic fields

    Full text link
    The interaction potential of a two-dimensional system of excitons with spatially separated electron-hole layers is considered in the strong magnetic field limit. The excitons are assumed to have free dynamics in the xx-yy plane, while being constrained or `polarized' in the zz direction. The model simulates semiconductor double layer systems under strong magnetic field normal to the layers. The {\em residual} interaction between excitons exhibits interesting features, arising from the coupling of the center-of-mass and internal degrees of freedom of the exciton in the magnetic field. This coupling induces a dynamical dipole moment proportional to the center-of-mass magnetic moment of the exciton. We show the explicit dependence of the inter-exciton potential matrix elements, and discuss the underlying physics. The unusual features of the interaction potential would be reflected in the collective response and non-equilibrium properties of such system.Comment: REVTEX - 11 pages - 1 fi

    Interaction and dynamical binding of spin waves or excitons in quantum Hall systems

    Full text link
    Interaction between spin waves (or excitons) moving in the lowest Landau level is studied using numerical diagonalization. Becuse of complicated statistics obeyed by these composite particles, their effective interaction is completely different from the dipole-dipole interaction predicted in the model of independent (bosonic) waves. In particular, spin waves moving in the same direction attract one another which leads to their dynamical binding. The interaction pseudopotentials V_[up,up](k) and V_[up,down](k) for two spin waves with equal wavevectors k and moving in the same or opposite directions have been calculated and shown to obey power laws V(k) ~ k^alpha at small k. A high value of alpha_[up,up]~4 explains the occurrence of linear bands in the spin excitation spectra of quantum Hall droplets.Comment: 6 pages, 4 figures, submitted to PR

    Charged vortices in superfluid systems with pairing of spatially separated carriers

    Full text link
    It is shown that in a magnetic field the vortices in superfluid electron-hole systems carry a real electrical charge. The charge value depends on the relation between the magnetic length and the Bohr radiuses of electrons and holes. In double layer systems at equal electron and hole filling factors in the case of the electron and hole Bohr radiuses much larger than the magnetic length the vortex charge is equal to the universal value (electron charge times the filling factor).Comment: 4 page

    Critical Currents of Ideal Quantum Hall Superfluids

    Full text link
    Filling factor ν=1\nu=1 bilayer electron systems in the quantum Hall regime have an excitonic-condensate superfluid ground state when the layer separation dd is less than a critical value dcd_c. On a quantum Hall plateau current injected and removed through one of the two layers drives a dissipationless edge current that carries parallel currents, and a dissipationless bulk supercurrent that carries opposing currents in the two layers. In this paper we discuss the theory of finite supercurrent bilayer states, both in the presence and in the absence of symmetry breaking inter-layer hybridization. Solutions to the microscopic mean-field equations exist at all condensate phase winding rates for zero and sufficiently weak hybridization strengths. We find, however, that collective instabilities occur when the supercurrent exceeds a critical value determined primarily by a competition between direct and exchange inter-layer Coulomb interactions. The critical current is estimated using a local stability criterion and varies as (dcd)1/2(d_c-d)^{1/2} when dd approaches dcd_c from below. For large inter-layer hybridization, we find that the critical current is limited by a soliton instability of microscopic origin.Comment: 18 RevTeX pgs, 21 eps figure
    corecore