4,558 research outputs found

    Pseudo diamagnetism of four component exciton condensates

    Full text link
    We analyze the spin structure of the ground state of four-component exciton condensates in coupled quantum wells as a function of spin-dependent interactions and applied magnetic field. The four components correspond to the degenerate exciton states characterized by ±2\pm2 and ±1\pm1 spin projections to the axis of the structure. We show that in a wide range of parameters, the chemical potential of the system increases as a function of magnetic field, which manifests a pseudo-diamagnetism of the system. The transitions to polarized two- and one-component condensates can be of the first-order in this case. The predicted effects are caused by energy conserving mixing of ±2\pm2 and ±1\pm1 excitons.Comment: 4 pages, 2 figure

    Decohering d-dimensional quantum resistance

    Get PDF
    The Landauer scattering approach to 4-probe resistance is revisited for the case of a d-dimensional disordered resistor in the presence of decoherence. Our treatment is based on an invariant-embedding equation for the evolution of the coherent reflection amplitude coefficient in the length of a 1-dimensional disordered conductor, where decoherence is introduced at par with the disorder through an outcoupling, or stochastic absorption, of the wave amplitude into side (transverse) channels, and its subsequent incoherent re-injection into the conductor. This is essentially in the spirit of B{\"u}ttiker's reservoir-induced decoherence. The resulting evolution equation for the probability density of the 4-probe resistance in the presence of decoherence is then generalised from the 1-dimensional to the d-dimensional case following an anisotropic Migdal-Kadanoff-type procedure and analysed. The anisotropy, namely that the disorder evolves in one arbitrarily chosen direction only, is the main approximation here that makes the analytical treatment possible. A qualitatively new result is that arbitrarily small decoherence reduces the localisation-delocalisation transition to a crossover making resistance moments of all orders finite.Comment: 14 pages, 1 figure, revised version, to appear in Phys. Rev.

    Crossover from diffusive to strongly localized regime in two-dimensional systems

    Full text link
    We have studied the conductance distribution function of two-dimensional disordered noninteracting systems in the crossover regime between the diffusive and the localized phases. The distribution is entirely determined by the mean conductance, g, in agreement with the strong version of the single-parameter scaling hypothesis. The distribution seems to change drastically at a critical value very close to one. For conductances larger than this critical value, the distribution is roughly Gaussian while for smaller values it resembles a log-normal distribution. The two distributions match at the critical point with an often appreciable change in behavior. This matching implies a jump in the first derivative of the distribution which does not seem to disappear as system size increases. We have also studied 1/g corrections to the skewness to quantify the deviation of the distribution from a Gaussian function in the diffusive regime.Comment: 4 pages, 4 figure

    One-dimensional transport of bosons between weakly linked reservoirs

    Get PDF
    We study a flow of ultracold bosonic atoms through a one-dimensional channel that connects two macroscopic three-dimensional reservoirs of Bose-condensed atoms via weak links implemented as potential barriers between each of the reservoirs and the channel. We consider reservoirs at equal chemical potentials so that a superflow of the quasicondensate through the channel is driven purely by a phase difference 2Φ imprinted between the reservoirs. We find that the superflow never has the standard Josephson form ∼ sin 2Φ. Instead, the superflow discontinuously flips direction at 2Φ ¼ _π and has metastable branches.We show that these features are robust and not smeared by fluctuations or phase slips. We describe a possible experimental setup for observing these phenomen

    Dynamic equation for quantum Hall bilayers with spontaneous interlayer coherence: The low-density limit

    Full text link
    The bilayer systems exhibit the Bose-Einstein condensation of excitons that emerge due to Coulomb pairing of electrons belonging to one layer with the holes belonging to the other layer. Here we present the microscopic derivation of the dynamic equation for the condensate wave function at a low density of electron-hole (ehe-h) pairs in a strong magnetic field perpendicular to the layers and an electric field directed along the layers. From this equation we obtain the dispersion law for collective excitations of the condensate and calculate the electric charge of the vortex in the exciton condensate. The critical interlayer spacing, the excess of which leads to a collapse of the superfluid state, is estimated. In bilayer systems with curved conducting layers, the effective mass of the ehe-h pair becomes the function of the ehe-h pair coordinates, the regions arise, where the energy of the ehe-h pair is lowered (exciton traps), and lastly ehe-h pairs can gain the polarization in the basal plane. This polarization leads to the appearance of quantized vortices even at zero temperature.Comment: 8 page

    Bose-Einstein condensation of trapped polaritons in 2D electron-hole systems in a high magnetic field

    Full text link
    The Bose-Einstein condensation (BEC) of magnetoexcitonic polaritons in two-dimensional (2D) electron-hole system embedded in a semiconductor microcavity in a high magnetic field BB is predicted. There are two physical realizations of 2D electron-hole system under consideration: a graphene layer and quantum well (QW). A 2D gas of magnetoexcitonic polaritons is considered in a planar harmonic potential trap. Two possible physical realizations of this trapping potential are assumed: inhomogeneous local stress or harmonic electric field potential applied to excitons and a parabolic shape of the semiconductor cavity causing the trapping of microcavity photons. The effective Hamiltonian of the ideal gas of cavity polaritons in a QW and graphene in a high magnetic field and the BEC temperature as functions of magnetic field are obtained. It is shown that the effective polariton mass MeffM_{\rm eff} increases with magnetic field as B1/2B^{1/2}. The BEC critical temperature Tc(0)T_{c}^{(0)} decreases as B1/4B^{-1/4} and increases with the spring constant of the parabolic trap. The Rabi splitting related to the creation of a magnetoexciton in a high magnetic field in graphene and QW is obtained. It is shown that Rabi splitting in graphene can be controlled by the external magnetic field since it is proportional to B1/4B^{-1/4}, while in a QW the Rabi splitting does not depend on the magnetic field when it is strong.Comment: 16 pages, 6 figures. accepted in Physical Review

    Metastable bound state of a pair of two-dimensional spatially separated electrons in anti-parallel magnetic fields

    Full text link
    We propose a new mechanism for binding of two equally charged carriers in a double-layer system subjected by a magnetic field of a special form. A field configuration for which the magnetic fields in adjacent layers are equal in magnitude and opposite in direction is considered. In such a field an additional integral of motion - the momentum of the pair P arises. For the case when in one layer the carrier is in the zero (n=0) Landau level while in the other layer - in the first (n=1) Landau level the dependence of the energy of the pair on its momentum E(P} is found. This dependence turns out to be nonmonotonic one : a local maximum and a local minimum appears, indicating the emergence of a metastable bound state of two carrier with the same sign of electrical charge.Comment: 7 page

    Theory of the Half-Polarized Quantum Hall States

    Full text link
    We report a theoretical analysis of the half-polarized quantum Hall states observed in a recent experiment. Our numerical results indicate that the ground state energy of the quantum Hall ν=2/3\nu= 2/3 and ν=2/5\nu= 2/5 states versus spin polarization has a downward cusp at half the maximal spin polarization. We map the two-component fermion system onto a system of excitons and describe the ground state as a liquid state of excitons with non-zero values of exciton angular momentum.Comment: 4 pages (RevTeX), 3 figures (PostScript), added reference

    Weak-localization corrections to the conductivity of double quantum wells

    Full text link
    The weak-localization contribution \delta\sigma(B) to the conductivity of a tunnel-coupled double-layer electron system is evaluated and its behavior in weak magnetic fields B perpendicular or parallel to the layers is examined. In a perpendicular field B, \delta \sigma(B) increases and remains dependent on tunneling as long as the magnetic field is smaller than \hbar/e D \tau_t, where D is the in-plane diffusion coefficient and \tau_t the interlayer tunneling time. If \tau_t is smaller than the inelastic scattering time, a parallel magnetic field also leads to a considerable increase of the concuctivity starting with a B**2 law and saturating at fields higher than \hbar/e Z (D \tau_t)**(1/2), where Z is the interlayer distance. In the limit of coherent tunneling, when \tau_t is comparable to elastic scattering time, \delta \sigma(B) differs from that of a single-layer system due to ensuing modifications of the diffusion coefficient. A possibility to probe the weak-localization effect in double-layer systems by the dependence of the conductivity on the gate-controlled level splitting is discussed.Comment: Text 18 pages in Latex/Revtex format, 4 Postscript figures. J. Phys.: CM,in pres

    Bose-Einstein condensation of quasiparticles in graphene

    Full text link
    The collective properties of different quasiparticles in various graphene based structures in high magnetic field have been studied. We predict Bose-Einstein condensation (BEC) and superfluidity of 2D spatially indirect magnetoexcitons in two-layer graphene. The superfluid density and the temperature of the Kosterlitz-Thouless phase transition are shown to be increasing functions of the excitonic density but decreasing functions of magnetic field and the interlayer separation. The instability of the ground state of the interacting 2D indirect magnetoexcitons in a slab of superlattice with alternating electron and hole graphene layers (GLs) is established. The stable system of indirect 2D magnetobiexcitons, consisting of pair of indirect excitons with opposite dipole moments, is considered in graphene superlattice. The superfluid density and the temperature of the Kosterlitz-Thouless phase transition for magnetobiexcitons in graphene superlattice are obtained. Besides, the BEC of excitonic polaritons in GL embedded in a semiconductor microcavity in high magnetic field is predicted. While superfluid phase in this magnetoexciton polariton system is absent due to vanishing of magnetoexciton-magnetoexciton interaction in a single layer in the limit of high magnetic field, the critical temperature of BEC formation is calculated. The essential property of magnetoexcitonic systems based on graphene (in contrast, e.g., to a quantum well) is stronger influence of magnetic field and weaker influence of disorder. Observation of the BEC and superfluidity of 2D quasiparticles in graphene in high magnetic field would be interesting confirmation of the phenomena we have described.Comment: 13 pages, 5 figure
    corecore