6,055 research outputs found
Ejection Energy of Photoelectrons in Strong Field Ionization
We show that zero ejection energy of the photoelectrons is classically
impossible for hydrogen-like ions, even when field ionization occurs
adiabatically. To prove this we transform the basic equations to those
describing two 2D anharmonic oscillators. The same method yields an alternative
way to derive the anomalous critical field of hydrogen-like ions. The
analytical results are confirmed and illustrated by numerical simulations. PACS
Number: 32.80.RmComment: 7 pages, REVTeX, postscript file including the figures is available
at http://www.physik.th-darmstadt.de/tqe/dieter/publist.html or via anonymous
ftp from ftp://tqe.iap.physik.th-darmstadt.de/pub/dieter/publ_I_pra_pre.ps,
accepted for publication in Phys. Rev.
A Model for the Voltage Steps in the Breakdown of the Integer Quantum Hall Effect
In samples used to maintain the US resistance standard the breakdown of the
dissipationless integer quantum Hall effect occurs as a series of dissipative
voltage steps. A mechanism for this type of breakdown is proposed, based on the
generation of magneto-excitons when the quantum Hall fluid flows past an
ionised impurity above a critical velocity. The calculated generation rate
gives a voltage step height in good agreement with measurements on both
electron and hole gases. We also compare this model to a hydrodynamic
description of breakdown.Comment: 4 pages including 3 figure
Theory of the Half-Polarized Quantum Hall States
We report a theoretical analysis of the half-polarized quantum Hall states
observed in a recent experiment. Our numerical results indicate that the ground
state energy of the quantum Hall and states versus spin
polarization has a downward cusp at half the maximal spin polarization. We map
the two-component fermion system onto a system of excitons and describe the
ground state as a liquid state of excitons with non-zero values of exciton
angular momentum.Comment: 4 pages (RevTeX), 3 figures (PostScript), added reference
Spin Relaxation in a Quantized Hall Regime in Presence of a Disorder
We study the spin relaxation (SR) of a two-dimensional electron gas (2DEG) in
the quantized Hall regime and discuss the role of spatial inhomogeneity effects
on the relaxation. The results are obtained for small filling factors () or when the filling factor is close to an integer. In either case SR times
are essentially determined by a smooth random potential. For small we
predict a "magneto-confinement" resonance manifested in the enhancement of the
SR rate when the Zeeman energy is close to the spacing of confinement sublevels
in the low-energy wing of the disorder-broadened Landau level. In the resonant
region the -dependence of the SR time has a peculiar non-monotonic shape. If
, the SR is going non-exponentially. Under typical conditions
the calculated SR times range from to s.Comment: 10 pages, 1 figure. To appear in JETP Letter
A Two-Parameter Recursion Formula For Scalar Field Theory
We present a two-parameter family of recursion formulas for scalar field
theory. The first parameter is the dimension . The second parameter
() allows one to continuously extrapolate between Wilson's approximate
recursion formula and the recursion formula of Dyson's hierarchical model. We
show numerically that at fixed , the critical exponent depends
continuously on . We suggest the use of the independence as a
guide to construct improved recursion formulas.Comment: 7 pages, uses Revtex, one Postcript figur
Effect of the Spatial Dispersion on the Shape of a Light Pulse in a Quantum Well
Reflectance, transmittance and absorbance of a symmetric light pulse, the
carrying frequency of which is close to the frequency of interband transitions
in a quantum well, are calculated. Energy levels of the quantum well are
assumed discrete, and two closely located excited levels are taken into
account. A wide quantum well (the width of which is comparable to the length of
the light wave, corresponding to the pulse carrying frequency) is considered,
and the dependance of the interband matrix element of the momentum operator on
the light wave vector is taken into account. Refractive indices of barriers and
quantum well are assumed equal each other. The problem is solved for an
arbitrary ratio of radiative and nonradiative lifetimes of electronic
excitations. It is shown that the spatial dispersion essentially affects the
shapes of reflected and transmitted pulses. The largest changes occur when the
radiative broadening is close to the difference of frequencies of interband
transitions taken into account.Comment: 7 pages, 5 figure
Evidence for Complex Subleading Exponents from the High-Temperature Expansion of the Hierarchical Ising Model
Using a renormalization group method, we calculate 800 high-temperature
coefficients of the magnetic susceptibility of the hierarchical Ising model.
The conventional quantities obtained from differences of ratios of coefficients
show unexpected smooth oscillations with a period growing logarithmically and
can be fitted assuming corrections to the scaling laws with complex exponents.Comment: 10 pages, Latex , uses revtex. 2 figures not included (hard copies
available on request
CRITICAL EXPONENTS FOR THE METAL-INSULATOR-TRANSITION
Non-standard .sty file `equations.sty' now included inline. The critical
exponents of the metal--insulator transition in disordered systems have been
the subject of much published work containing often contradictory results.
Values ranging between \half and can be found even in the recent
literature. In this paper the results of a long term study of the transition
are presented. The data have been calculated with sufficient accuracy (0.2\%)
that the calculated exponent can be quoted as with
confidence. The reasons for the previous scatter of results is discussed.Comment: 8 pages + figures, LaTe
- …