176 research outputs found
Theory of combined exciton-cyclotron resonance in a two-dimensional electron gas: The strong magnetic field regime
I develop a theory of combined exciton-cyclotron resonance (ExCR) in a
low-density two-dimensional electron gas in high magnetic fields. In the
presence of excess electrons an incident photon creates an exciton and
simultaneously excites one electron to higher-lying Landau levels. I derive
exact ExCR selection rules that follow from the existing dynamical symmetries,
magnetic translations and rotations about the magnetic field axis. The nature
of the final states in the ExCR is elucidated. The relation between ExCR and
shake-up processes is discussed. The double-peak ExCR structure for transitions
to the first electron Landau level is predicted.Comment: 5 pages, 3 figures, replaced with the published versio
Internal Transitions of Two-Dimensional Charged Magneto-Excitons X-: Theory and Experiment
Internal spin-singlet and spin-triplet transitions of charged excitons X- in
magnetic fields in quantum wells have been studied experimentally and
theoretically. The allowed X- transitions are photoionizing and exhibit a
characteristic double-peak structure, which reflects the rich structure of the
magnetoexciton continua in higher Landau levels (LL's). We discuss a novel
exact selection rule, a hidden manifestation of translational invariance, that
governs transitions of charged mobile complexes in a magnetic field.Comment: 4 pages, 2 figures, submitted to Physica
Charged hydrogenic problem in a magnetic field: Non-commutative translations, unitary transformations, and coherent states
An operator formalism is developed for a description of charged electron-hole
complexes in magnetic fields. A novel unitary transformation of the Hamiltonian
that allows one to partially separate the center-of-mass and internal motions
is proposed. We study the operator algebra that leads to the appearance of new
effective particles, electrons and holes with modified interparticle
interactions, and their coherent states in magnetic fields. The developed
formalism is used for studying a two-dimensional negatively charged
magnetoexciton . It is shown that Fano-resonances are present in the
spectra of internal transitions, indicating the existence of
three-particle quasi-bound states embedded in the continuum of higher Landau
levels.Comment: 9 pages + 2 figures, accepted in PRB, a couple of typos correcte
Shake-up Processes in a Low-Density Two-Dimensional Electron Gas: Spin-Dependent Transitions to Higher Hole Landau Levels
A theory of shake-up processes in photoabsorption of an interacting
low-density two-dimensional electron gas (2DEG) in strong magnetic fields is
presented. In these processes, an incident photon creates an electron-hole pair
and, because of Coulomb interactions, simultaneously excites one particle to
higher Landau levels (LL's). In this work, the spectra of correlated charged
spin-singlet and spin-triplet electron-hole states in the first hole LL and
optical transitions to these states (i.e., shake-ups to the first hole LL) are
studied. Our results indicate, in particular, the presence of optically-active
three-particle quasi-discrete states in the exciton continuum that may give
rise to surprisingly sharp Fano resonances in strong magnetic fields. The
relation between shake-ups in photoabsorption of the 2DEG and in the 2D hole
gas (2DHG), and shake-ups of isolated negative X^- and positive X^+ trions are
discussed.Comment: 8 pages, 8 figures. References updated, one figure added (Fig. 6).
Accepted in Phys. Rev.
Activation Energy in a Quantum Hall Ferromagnet and Non-Hartree-Fock Skyrmions
The energy of Skyrmions is calculated with the help of a technique based on
the excitonic representation: the basic set of one-exciton states is used for
the perturbation-theory formalism instead of the basic set of one-particle
states. We use the approach, at which a skyrmion-type excitation (at zero Lande
factor) is considered as a smooth non-uniform rotation in the 3D spin space.
The result within the framework of an excitonically diagonalized part of the
Coulomb Hamiltonian can be obtained by any ratio [where is the typical Coulomb
energy ( being the magnetic length); is the cyclotron
frequency], and the Landau-level mixing is thereby taken into account. In
parallel with this, the result is also found exactly, to second order in terms
of the (if supposing to be small) with use of the
total Hamiltonian. When extrapolated to the region , our
calculations show that the skyrmion gap becomes substantially reduced in
comparison with the Hartree-Fock calculations. This fact brings the theory
essentially closer to the available experimental data.Comment: 14 pages, 1 figure. to appear in Phys. Rev. B, Vol. 65 (Numbers ~
19-22), 200
Challenges of open innovation: the paradox of firm investment in open-source software
Open innovation is a powerful framework encompassing the generation, capture, and employment of intellectual property at the firm level. We identify three fundamental challenges for firms in applying the concept of open innovation: finding creative ways to exploit internal innovation, incorporating external innovation into internal development, and motivating outsiders to supply an ongoing stream of external innovations. This latter challenge involves a paradox, why would firms spend money on R&D efforts if the results of these efforts are available to rival firms? To explore these challenges, we examine the activity of firms in opensource software to support their innovation strategies. Firms involved in open-source software often make investments that will be shared with real and potential rivals. We identify four strategies firms employ – pooled R&D/product development, spinouts, selling complements and attracting donated complements – and discuss how they address the three key challenges of open innovation. We conclude with suggestions for how similar strategies may apply in other industries and offer some possible avenues for future research on open innovation
Interaction potential between dynamic dipoles: polarized excitons in strong magnetic fields
The interaction potential of a two-dimensional system of excitons with
spatially separated electron-hole layers is considered in the strong magnetic
field limit. The excitons are assumed to have free dynamics in the -
plane, while being constrained or `polarized' in the direction. The model
simulates semiconductor double layer systems under strong magnetic field normal
to the layers. The {\em residual} interaction between excitons exhibits
interesting features, arising from the coupling of the center-of-mass and
internal degrees of freedom of the exciton in the magnetic field. This coupling
induces a dynamical dipole moment proportional to the center-of-mass magnetic
moment of the exciton. We show the explicit dependence of the inter-exciton
potential matrix elements, and discuss the underlying physics. The unusual
features of the interaction potential would be reflected in the collective
response and non-equilibrium properties of such system.Comment: REVTEX - 11 pages - 1 fi
Authoring Multi-Actor Behaviors in Crowds With Diverse Personalities
Multi-actor simulation is critical to cinematic content creation, disaster and security simulation, and interactive entertainment. A key challenge is providing an appropriate interface for authoring high-fidelity virtual actors with featurerich control mechanisms capable of complex interactions with the environment and other actors. In this chapter, we present work that addresses the problem of behavior authoring at three levels: Individual and group interactions are conducted in an event-centric manner using parameterized behavior trees, social crowd dynamics are captured using the OCEAN personality model, and a centralized automated planner is used to enforce global narrative constraints on the scale of the entire simulation. We demonstrate the benefits and limitations of each of these approaches and propose the need for a single unifying construct capable of authoring functional, purposeful, autonomous actors which conform to a global narrative in an interactive simulation
Negatively Charged Excitons and Photoluminescence in Asymmetric Quantum Well
We study photoluminescence (PL) of charged excitons () in narrow
asymmetric quantum wells in high magnetic fields B. The binding of all
states strongly depends on the separation of electron and hole layers.
The most sensitive is the ``bright'' singlet, whose binding energy decreases
quickly with increasing even at relatively small B. As a result, the
value of B at which the singlet--triplet crossing occurs in the spectrum
also depends on and decreases from 35 T in a symmetric 10 nm GaAs well
to 16 T for nm. Since the critical values of at which
different states unbind are surprisingly small compared to the well
width, the observation of strongly bound states in an experimental PL
spectrum implies virtually no layer displacement in the sample. This casts
doubt on the interpretation of PL spectra of heterojunctions in terms of
recombination
- …