9,055 research outputs found

    Pseudo diamagnetism of four component exciton condensates

    Full text link
    We analyze the spin structure of the ground state of four-component exciton condensates in coupled quantum wells as a function of spin-dependent interactions and applied magnetic field. The four components correspond to the degenerate exciton states characterized by ±2\pm2 and ±1\pm1 spin projections to the axis of the structure. We show that in a wide range of parameters, the chemical potential of the system increases as a function of magnetic field, which manifests a pseudo-diamagnetism of the system. The transitions to polarized two- and one-component condensates can be of the first-order in this case. The predicted effects are caused by energy conserving mixing of ±2\pm2 and ±1\pm1 excitons.Comment: 4 pages, 2 figure

    Decohering d-dimensional quantum resistance

    Get PDF
    The Landauer scattering approach to 4-probe resistance is revisited for the case of a d-dimensional disordered resistor in the presence of decoherence. Our treatment is based on an invariant-embedding equation for the evolution of the coherent reflection amplitude coefficient in the length of a 1-dimensional disordered conductor, where decoherence is introduced at par with the disorder through an outcoupling, or stochastic absorption, of the wave amplitude into side (transverse) channels, and its subsequent incoherent re-injection into the conductor. This is essentially in the spirit of B{\"u}ttiker's reservoir-induced decoherence. The resulting evolution equation for the probability density of the 4-probe resistance in the presence of decoherence is then generalised from the 1-dimensional to the d-dimensional case following an anisotropic Migdal-Kadanoff-type procedure and analysed. The anisotropy, namely that the disorder evolves in one arbitrarily chosen direction only, is the main approximation here that makes the analytical treatment possible. A qualitatively new result is that arbitrarily small decoherence reduces the localisation-delocalisation transition to a crossover making resistance moments of all orders finite.Comment: 14 pages, 1 figure, revised version, to appear in Phys. Rev.

    Cosine and Sine Operators Related with Orthogonal Polynomial Sets on the Intervall [-1,1]

    Full text link
    The quantization of phase is still an open problem. In the approach of Susskind and Glogower so called cosine and sine operators play a fundamental role. Their eigenstates in the Fock representation are related with the Chebyshev polynomials of the second kind. Here we introduce more general cosine and sine operators whose eigenfunctions in the Fock basis are related in a similar way with arbitrary orthogonal polynomial sets on the intervall [-1,1]. To each polynomial set defined in terms of a weight function there corresponds a pair of cosine and sine operators. Depending on the symmetry of the weight function we distinguish generalized or extended operators. Their eigenstates are used to define cosine and sine representations and probability distributions. We consider also the inverse arccosine and arcsine operators and use their eigenstates to define cosine-phase and sine-phase distributions, respectively. Specific, numerical and graphical results are given for the classical orthogonal polynomials and for particular Fock and coherent states.Comment: 1 tex-file (24 pages), 11 figure

    Fictitious Level Dynamics: A Novel Approach to Spectral Statistics in Disordered Conductors

    Full text link
    We establish a new approach to calculating spectral statistics in disordered conductors, by considering how energy levels move in response to changes in the impurity potential. We use this fictitious dynamics to calculate the spectral form factor in two ways. First, describing the dynamics using a Fokker-Planck equation, we make a physically motivated decoupling, obtaining the spectral correlations in terms of the quantum return probability. Second, from an identity which we derive between two- and three-particle correlation functions, we make a mathematically controlled decoupling to obtain the same result. We also calculate weak localization corrections to this result, and show for two dimensional systems (which are of most interest) that corrections vanish to three-loop order.Comment: 35 pages in REVTeX format including 10 postscript figures; to be published in a special issue (on Topics in Mesoscopic Physics) of the Journal of Mathematical Physics, October 199

    Bose-Einstein condensation of trapped polaritons in 2D electron-hole systems in a high magnetic field

    Full text link
    The Bose-Einstein condensation (BEC) of magnetoexcitonic polaritons in two-dimensional (2D) electron-hole system embedded in a semiconductor microcavity in a high magnetic field BB is predicted. There are two physical realizations of 2D electron-hole system under consideration: a graphene layer and quantum well (QW). A 2D gas of magnetoexcitonic polaritons is considered in a planar harmonic potential trap. Two possible physical realizations of this trapping potential are assumed: inhomogeneous local stress or harmonic electric field potential applied to excitons and a parabolic shape of the semiconductor cavity causing the trapping of microcavity photons. The effective Hamiltonian of the ideal gas of cavity polaritons in a QW and graphene in a high magnetic field and the BEC temperature as functions of magnetic field are obtained. It is shown that the effective polariton mass MeffM_{\rm eff} increases with magnetic field as B1/2B^{1/2}. The BEC critical temperature Tc(0)T_{c}^{(0)} decreases as B1/4B^{-1/4} and increases with the spring constant of the parabolic trap. The Rabi splitting related to the creation of a magnetoexciton in a high magnetic field in graphene and QW is obtained. It is shown that Rabi splitting in graphene can be controlled by the external magnetic field since it is proportional to B1/4B^{-1/4}, while in a QW the Rabi splitting does not depend on the magnetic field when it is strong.Comment: 16 pages, 6 figures. accepted in Physical Review

    Interindustry Wage Differentials in Australia, 1947-54

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91914/1/Kmenta-Inter-Industry_Wage.pd

    Crossover from diffusive to strongly localized regime in two-dimensional systems

    Full text link
    We have studied the conductance distribution function of two-dimensional disordered noninteracting systems in the crossover regime between the diffusive and the localized phases. The distribution is entirely determined by the mean conductance, g, in agreement with the strong version of the single-parameter scaling hypothesis. The distribution seems to change drastically at a critical value very close to one. For conductances larger than this critical value, the distribution is roughly Gaussian while for smaller values it resembles a log-normal distribution. The two distributions match at the critical point with an often appreciable change in behavior. This matching implies a jump in the first derivative of the distribution which does not seem to disappear as system size increases. We have also studied 1/g corrections to the skewness to quantify the deviation of the distribution from a Gaussian function in the diffusive regime.Comment: 4 pages, 4 figure

    Magnetic field generation in Higgs inflation model

    Full text link
    We study the generation of magnetic field in Higgs-inflation models where the Standard Model Higgs boson has a large coupling to the Ricci scalar. We couple the Higgs field to the Electromagnetic fields via a non- renormalizable dimension six operator suppressed by the Planck scale in the Jordan frame. We show that during Higgs inflation magnetic fields with present value 10610^{-6} Gauss and comoving coherence length of 100kpc100 kpc can be generated in the Einstein frame. The problem of large back-reaction which is generic in the usual inflation models of magneto-genesis is avoided as the back-reaction is suppressed by the large Higgs-curvature coupling.Comment: 10 pages, RevTeX

    Ejection Energy of Photoelectrons in Strong Field Ionization

    Get PDF
    We show that zero ejection energy of the photoelectrons is classically impossible for hydrogen-like ions, even when field ionization occurs adiabatically. To prove this we transform the basic equations to those describing two 2D anharmonic oscillators. The same method yields an alternative way to derive the anomalous critical field of hydrogen-like ions. The analytical results are confirmed and illustrated by numerical simulations. PACS Number: 32.80.RmComment: 7 pages, REVTeX, postscript file including the figures is available at http://www.physik.th-darmstadt.de/tqe/dieter/publist.html or via anonymous ftp from ftp://tqe.iap.physik.th-darmstadt.de/pub/dieter/publ_I_pra_pre.ps, accepted for publication in Phys. Rev.

    The Zipf law for random texts with unequal probabilities of occurrence of letters and the Pascal pyramid

    Full text link
    We model the generation of words with independent unequal probabilities of occurrence of letters. We prove that the probability p(r)p(r) of occurrence of words of rank rr has a power asymptotics. As distinct from the paper published earlier by B. Conrad and M. Mitzenmacher, we give a brief proof by elementary methods and obtain an explicit formula for the exponent of the power law.Comment: 4 page
    corecore