8,512 research outputs found
Investigation of battery active nickel oxides Final report
Identification and characterization of battery active compound structures formed on nickel oxide electrode during charging and dischargin
Cosine and Sine Operators Related with Orthogonal Polynomial Sets on the Intervall [-1,1]
The quantization of phase is still an open problem. In the approach of
Susskind and Glogower so called cosine and sine operators play a fundamental
role. Their eigenstates in the Fock representation are related with the
Chebyshev polynomials of the second kind. Here we introduce more general cosine
and sine operators whose eigenfunctions in the Fock basis are related in a
similar way with arbitrary orthogonal polynomial sets on the intervall [-1,1].
To each polynomial set defined in terms of a weight function there corresponds
a pair of cosine and sine operators. Depending on the symmetry of the weight
function we distinguish generalized or extended operators. Their eigenstates
are used to define cosine and sine representations and probability
distributions. We consider also the inverse arccosine and arcsine operators and
use their eigenstates to define cosine-phase and sine-phase distributions,
respectively. Specific, numerical and graphical results are given for the
classical orthogonal polynomials and for particular Fock and coherent states.Comment: 1 tex-file (24 pages), 11 figure
Investigation of battery active nickel oxides Fourth quarterly report
Electrochemical analysis of battery active sintered nickel oxides - oxidation state, stand and temperature effect, and charge retentio
Investigation of battery active nickel oxides Third quarterly report
X-ray diffraction of sintered nickel oxide charged electrode, structural effect of initial stand at various temperatures, and comparison with cobalt doped positive
A two-dimensional, two-electron model atom in a laser pulse: exact treatment, single active electron-analysis, time-dependent density functional theory, classical calculations, and non-sequential ionization
Owing to its numerical simplicity, a two-dimensional two-electron model atom,
with each electron moving in one direction, is an ideal system to study
non-perturbatively a fully correlated atom exposed to a laser field. Frequently
made assumptions, such as the ``single active electron''- approach and
calculational approximations, e.g. time dependent density functional theory or
(semi-) classical techniques, can be tested. In this paper we examine the
multiphoton short pulse-regime. We observe ``non-sequential'' ionization, i.e.\
double ionization at lower field strengths as expected from a sequential,
single active electron-point of view. Since we find non-sequential ionization
also in purely classical simulations, we are able to clarify the mechanism
behind this effect in terms of single particle trajectories. PACS Number(s):
32.80.RmComment: 10 pages, 16 figures (gzipped postscript), see also
http://www.physik.tu-darmstadt.de/tqe
Ejection Energy of Photoelectrons in Strong Field Ionization
We show that zero ejection energy of the photoelectrons is classically
impossible for hydrogen-like ions, even when field ionization occurs
adiabatically. To prove this we transform the basic equations to those
describing two 2D anharmonic oscillators. The same method yields an alternative
way to derive the anomalous critical field of hydrogen-like ions. The
analytical results are confirmed and illustrated by numerical simulations. PACS
Number: 32.80.RmComment: 7 pages, REVTeX, postscript file including the figures is available
at http://www.physik.th-darmstadt.de/tqe/dieter/publist.html or via anonymous
ftp from ftp://tqe.iap.physik.th-darmstadt.de/pub/dieter/publ_I_pra_pre.ps,
accepted for publication in Phys. Rev.
Gene identification for the cblD defect of vitamin B12 metabolism
Background Vitamin B12 (cobalamin) is an essential cofactor in several metabolic pathways. Intracellular conversion of cobalamin to its two coenzymes, adenosylcobalamin in mitochondria and methylcobalamin in the cytoplasm, is necessary for the homeostasis of methylmalonic acid and homocysteine. Nine defects of intracellular cobalamin metabolism have been defined by means of somatic complementation analysis. One of these defects, the cblD defect, can cause isolated methylmalonic aciduria, isolated homocystinuria, or both. Affected persons present with multisystem clinical abnormalities, including developmental, hematologic, neurologic, and metabolic findings. The gene responsible for the cblD defect has not been identified.
Methods We studied seven patients with the cblD defect, and skin fibroblasts from each were investigated in cell culture. Microcell-mediated chromosome transfer and refined genetic mapping were used to localize the responsible gene. This gene was transfected into cblD fibroblasts to test for the rescue of adenosylcobalamin and methylcobalamin synthesis.
Results The cblD gene was localized to human chromosome 2q23.2, and a candidate gene, designated MMADHC (methylmalonic aciduria, cblD type, and homocystinuria), was identified in this region. Transfection of wild-type MMADHC rescued the cellular phenotype, and the functional importance of mutant alleles was shown by means of transfection with mutant constructs. The predicted MMADHC protein has sequence homology with a bacterial ATP-binding cassette transporter and contains a putative cobalamin binding motif and a putative mitochondrial targeting sequence.
Conclusions Mutations in a gene we designated MMADHC are responsible for the cblD defect in vitamin B12 metabolism. Various mutations are associated with each of the three biochemical phenotypes of the disorder
Weak-localization corrections to the conductivity of double quantum wells
The weak-localization contribution \delta\sigma(B) to the conductivity of a
tunnel-coupled double-layer electron system is evaluated and its behavior in
weak magnetic fields B perpendicular or parallel to the layers is examined. In
a perpendicular field B, \delta \sigma(B) increases and remains dependent on
tunneling as long as the magnetic field is smaller than \hbar/e D \tau_t, where
D is the in-plane diffusion coefficient and \tau_t the interlayer tunneling
time. If \tau_t is smaller than the inelastic scattering time, a parallel
magnetic field also leads to a considerable increase of the concuctivity
starting with a B**2 law and saturating at fields higher than \hbar/e Z (D
\tau_t)**(1/2), where Z is the interlayer distance. In the limit of coherent
tunneling, when \tau_t is comparable to elastic scattering time, \delta
\sigma(B) differs from that of a single-layer system due to ensuing
modifications of the diffusion coefficient. A possibility to probe the
weak-localization effect in double-layer systems by the dependence of the
conductivity on the gate-controlled level splitting is discussed.Comment: Text 18 pages in Latex/Revtex format, 4 Postscript figures. J. Phys.:
CM,in pres
Magnetic field generation in Higgs inflation model
We study the generation of magnetic field in Higgs-inflation models where the
Standard Model Higgs boson has a large coupling to the Ricci scalar. We couple
the Higgs field to the Electromagnetic fields via a non- renormalizable
dimension six operator suppressed by the Planck scale in the Jordan frame. We
show that during Higgs inflation magnetic fields with present value
Gauss and comoving coherence length of can be generated in the
Einstein frame. The problem of large back-reaction which is generic in the
usual inflation models of magneto-genesis is avoided as the back-reaction is
suppressed by the large Higgs-curvature coupling.Comment: 10 pages, RevTeX
Dynamic equation for quantum Hall bilayers with spontaneous interlayer coherence: The low-density limit
The bilayer systems exhibit the Bose-Einstein condensation of excitons that
emerge due to Coulomb pairing of electrons belonging to one layer with the
holes belonging to the other layer. Here we present the microscopic derivation
of the dynamic equation for the condensate wave function at a low density of
electron-hole () pairs in a strong magnetic field perpendicular to the
layers and an electric field directed along the layers. From this equation we
obtain the dispersion law for collective excitations of the condensate and
calculate the electric charge of the vortex in the exciton condensate. The
critical interlayer spacing, the excess of which leads to a collapse of the
superfluid state, is estimated. In bilayer systems with curved conducting
layers, the effective mass of the pair becomes the function of the
pair coordinates, the regions arise, where the energy of the pair is
lowered (exciton traps), and lastly pairs can gain the polarization in
the basal plane. This polarization leads to the appearance of quantized
vortices even at zero temperature.Comment: 8 page
- …