11,024 research outputs found
Method of carbonizing polyacrylonitrile fibers
This invention relates to a method of carbonizing polyacrylonitrile fibers by exposing the fibers at an elevated temperature to an oxidizing atmosphere; then exposing the oxidized fibers to an atmosphere of an inert gas such as nitrogen containing a carbonaceous material such as acetylene. The fibers are preferably treated with an organic compound, for example benzoic acid, before the exposure to an oxidizing atmosphere. The invention also relates to the resulting fibers. The treated fibers have enhanced tensile strength
The distribution of forces affects vibrational properties in hard sphere glasses
We study theoretically and numerically the elastic properties of hard sphere
glasses, and provide a real-space description of their mechanical stability. In
contrast to repulsive particles at zero-temperature, we argue that the presence
of certain pairs of particles interacting with a small force soften elastic
properties. This softening affects the exponents characterizing elasticity at
high pressure, leading to experimentally testable predictions. Denoting
the force distribution of such pairs and the
packing fraction at which pressure diverges, we predict that (i) the density of
states has a low-frequency peak at a scale , rising up to it as
, and decaying above as where and is the frequency,
(ii) shear modulus and mean-squared displacement are inversely proportional
with where
, and (iii) continuum elasticity breaks down on a
scale where
and , where is the
coordination and the spatial dimension. We numerically test (i) and provide
data supporting that in our bi-disperse system,
independently of system preparation in two and three dimensions, leading to
, , and . Our results for the
mean-square displacement are consistent with a recent exact replica computation
for , whereas some observations differ, as rationalized by the
present approach.Comment: 5 pages + 4 pages supplementary informatio
Superfluidity of "dirty" indirect excitons and magnetoexcitons in two-dimensional trap
The superfluid phase transition of bosons in a two-dimensional (2D) system
with disorder and an external parabolic potential is studied. The theory is
applied to experiments on indirect excitons in coupled quantum wells. The
random field is allowed to be large compared to the dipole-dipole repulsion
between excitons. The slope of the external parabolic trap is assumed to change
slowly enough to apply the local density approximation (LDA) for the superfluid
density, which allows us to calculate the Kosterlitz-Thouless temperature
at each local point of the trap. The superfluid phase occurs
around the center of the trap () with the normal phase outside
this area. As temperature increases, the superfluid area shrinks and disappears
at temperature . Disorder acts to deplete the condensate; the
minimal total number of excitons for which superfluidity exists increases with
disorder at fixed temperature. If the disorder is large enough, it can destroy
the superfluid entirely. The effect of magnetic field is also calculated for
the case of indirect excitons. In a strong magnetic field , the superfluid
component decreases, primarily due to the change of the exciton effective mass.Comment: 13 pages, 3 figure
Modulator for tone and binary signals
Tones and binary information are transmitted as phase variations on a carrier wave of constant amplitude and frequency. The carrier and tones are applied to a balanced modulator for deriving an output signal including a pair of sidebands relative to the carrier. The carrier is phase modulated by a digital signal so that it is + or - 90 deg out of phase with the predetermined phase of the carrier. The carrier is combined in an algebraic summing device with the phase modulated signal and the balanced modulator output signal. The output of the algebraic summing device is hard limited to derive a constant amplitude and frequency signal having very narrow bandwidth requirements. At a receiver, the tones and binary data are detected with a phase locked loop having a voltage controlled oscillator driving a pair of orthogonal detection channels
Theory of the Jamming Transition at Finite Temperature
A theory for the microscopic structure and the vibrational properties of soft
sphere glass at finite temperature is presented. With an effective potential,
derived here, the phase diagram and vibrational properties are worked out
around the Maxwell critical point at zero temperature and pressure .
Variational arguments and effective medium theory identically predict a
non-trivial temperature scale with
such that low-energy vibrational properties are hard-sphere like for , and zero-temperature soft-sphere like otherwise. However, due to
crossovers in the equation of state relating , , and the packing fraction
, these two regimes lead to four regions where scaling behaviors differ
when expressed in terms of and . Scaling predictions are presented
for the mean-squared displacement, characteristic frequency, shear modulus, and
characteristic elastic length in all regions of the phase diagram.Comment: 8 pages + 3 pages S
- …