10 research outputs found
Layered double hydroxide based active corrosion protective sealing of plasma electrolytic oxidation/sol-gel composite coating on AA2024
This work reports a novel approach for growing layered double hydroxide (LDH) films on any plasma electrolytic oxidation (PEO) coated AA2024 independently of the nature of the PEO coating. The specific PEO coating chosen to carry out this work is considered to be not suitable for direct LDH growth because of phase composition and morphological features. In this paper, we describe a new methodology that consists of covering the PEO coating with a thin layer of aluminum oxide based xerogel as the source of aluminate ions for subsequent in-situ LDH growth. X-ray diffraction (XRD) and scanning electron microscope (SEM) images showed a successful formation of LDHs on the surface. An improvement in terms of active corrosion protection was also demonstrated by electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET).publishe
Π‘Π²Π΅ΡΡ Π²ΡΡΠΎΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠΉ ΠΏΠΎΠ»ΠΈΡΡΠΈΠ»Π΅Π½ (Π‘ΠΠΠΠ) ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΠ²Π° ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠΈΠΊΡΠ° Π΄Π»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ 3D ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΠΊΡΠ»ΡΡΡΡΡ
The study is devoted to the development of an artificial material based on the ultrahigh-molecular weight polyethylene (UHMWPE) with a porous or cellular 3D structure as a cellular matrix β a framework for growing cell cultures. The development of such matrix provides support for neuronal cell culture under conditions that mimick those that exist in the living body. Typically, in vitro cellular studies are conducted in a 2D format, which limits intercellular interactions, morphology, differentiation, survival, signaling responses, gene expression and proliferation that are found in vivo. Here, we propose to use UHMWPE as a material of the cellular matrix, the ultra-high molecular weight polyethylene. UHMWP is a bioinert substance, wich allows forming a system of open connected pores needed to provide cellular life conditions with supply of nutrients and oxygen as well as the removal of waste products, the possibility of intercellular communication, etc. As a result, the use of UHMWPE as a cellular matrix will allow to study the processes occurring in cells in the 3D environment.Π Π°Π±ΠΎΡΠ° ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° Π°Π½Π°Π»ΠΈΠ·Ρ ΡΠ²ΠΎΠΉΡΡΠ² ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ²Π΅ΡΡ
Π²ΡΡΠΎΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΡΡΠΈΠ»Π΅Π½Π° (Π‘ΠΠΠΠ) Ρ ΠΏΠΎΡΠΈΡΡΠΎΠΉ ΠΈΠ»ΠΈ ΡΡΠ΅ΠΈΡΡΠΎΠΉ 3D-ΡΡΡΡΠΊΡΡΡΠΎΠΉ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠΈΠΊΡΠ° β ΠΊΠ°ΡΠΊΠ°ΡΠ° Π΄Π»Ρ Π²ΡΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΠΊΡΠ»ΡΡΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ. Π Π°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΊΠ°ΡΠΊΠ°ΡΠ° ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΠΊΡΠ»ΡΡΡΡΡ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
, ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΡΡ
ΠΊ ΡΠ΅ΠΌ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ Π² ΠΆΠΈΠ²ΠΎΠΌ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ΅. ΠΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ in vitro ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡ Π² 2D-ΡΠΎΡΠΌΠ°ΡΠ΅, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠΎ ΡΠ²ΠΎΠ΅ΠΉ ΠΏΡΠΈΡΠΎΠ΄Π΅ ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΠ²Π°Π΅Ρ ΠΌΠ΅ΠΆΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ, ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡ, Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²ΠΊΡ, Π²ΡΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡΡ, ΡΠΈΠ³Π½Π°Π»ΡΠ½ΡΠ΅ ΠΎΡΠ²Π΅ΡΡ, ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡ Π³Π΅Π½ΠΎΠ² ΠΈ ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΡ, Π½Π°Π±Π»ΡΠ΄Π°Π΅ΠΌΡΠ΅ in vivo. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠΈΠΊΡΠ° ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π±ΠΈΠΎΠΈΠ½Π΅ΡΡΠ½ΡΠΉ ΡΠ²Π΅ΡΡ
Π²ΡΡΠΎΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠΉ ΠΏΠΎΠ»ΠΈΡΡΠΈΠ»Π΅Π½ (Π‘ΠΠΠΠ), ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΡΠΎΡΠΌΠΈΡΠΎΠ²Π°ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΠΊΡΡΡΡΡ
ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
ΠΏΠΎΡ Ρ ΡΠ΅Π»ΡΡ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΠΆΠΈΠ·Π½Π΅Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ β βΠΏΠΎΠ΄Π²ΠΎΠ΄β ΠΏΠΈΡΠ°Π½ΠΈΡ ΠΈ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π°, ΡΠ΄Π°Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² ΠΆΠΈΠ·Π½Π΅Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΎΡΡΡΠ΅ΡΡΠ²Π»Π΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
ΡΠ²ΡΠ·Π΅ΠΉ ΠΈ Ρ.Π΄. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π‘ΠΠΠΠ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠΈΠΊΡΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ ΠΈΠ·ΡΡΠΈΡΡ ΠΏΡΠΎΡΠ΅ΡΡΡ, ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡΠΈΠ΅ Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
3D-ΡΡΠ΅Π΄Ρ
ΠΡΡΠΎΠ³Π΅Π»ΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ SiOβ, ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΊΠΎΠ²Π°Π»Π΅Π½ΡΠ½ΠΎ ΡΠ²ΡΠ·Π°Π½Π½ΡΠΌΠΈ Π°ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΊΠΈΡΠ»ΠΎΡΠ°ΠΌΠΈ, ΠΊΠ°ΠΊ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ Π΄ΠΎΡΡΠ°Π²ΠΊΠΈ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ²
Hybrid aerogels (AGs) containing NH2-group were acylated by benzoic and salicylic acids. The acylated AGs had the specific area value of 170-220m2/g and were not deacylated in H2O-iPrOH mixture at 37Β°Π‘ during 24h. In 0.5% HCl at 37Β°Π‘ hydrolysis takes place releasing free acids and giving the possibility to use aminoaerogels as drug delivery system.ΠΠΈΠ±ΡΠΈΠ΄Π½ΡΠ΅ Π°ΡΡΠΎΠ³Π΅Π»ΠΈ (ΠΠ), ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΠ³Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ΅ΡΡΠ°ΠΌΠ΅ΡΠΎΠΊΡΠΈΡΠΈΠ»Π°Π½Π° (Π’ΠΠΠ‘) ΠΈ 3-Π°ΠΌΠΈΠ½ΠΎΠΏΡΠΎΠΏΠΈΠ»ΡΡΠΈΠΌΠ΅ΡΠΎΠΊΡΠΈΡΠΈΠ»Π°Π½Π° (ΠΠΠ’ΠΠ‘) Π² ΠΌΠΎΠ»ΡΠ½ΠΎΠΌ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ Π’ΠΠΠ‘:ΠΠΠ’ΠΠ‘=4:1, Π±ΡΠ»ΠΈ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Ρ ΠΏΡΡΡΠΌ Π°ΡΠΈΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π°ΠΌΠΈΠ½ΠΎΠ³ΡΡΠΏΠΏΡ ΠΎΡΡΠ°ΡΠΊΠ°ΠΌΠΈ Π±Π΅Π½Π·ΠΎΠΉΠ½ΠΎΠΉ ΠΈ ΡΠ°Π»ΠΈΡΠΈΠ»ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡ. Π£Π΄Π΅Π»ΡΠ½Π°Ρ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΡΠΎΡΡΠ°Π²ΠΈΠ»Π° 170-220 ΠΌ2/Π³. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π²ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°Π½ΠΈΠ΅ ΠΠ Π² Π²ΠΎΠ΄Π½ΠΎ-ΠΈΠ·ΠΎΠΏΡΠΎΠΏΠ°Π½ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΠ°ΡΡΠ²ΠΎΡΠ΅ ΠΏΡΠΈ 37Β°Π‘ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 24 Ρ Π½Π΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ Π²ΡΡΠ²ΠΎΠ±ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ Π² ΡΠ°ΡΡΠ²ΠΎΡ, Π² ΡΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠ°ΠΊ Π² 0.5% HCl ΠΏΡΠΈ 37Β°Π‘ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΠ» Π³ΠΈΠ΄ΡΠΎΠ»ΠΈΠ· Π°ΠΌΠΈΠ΄Π½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ. ΠΠ°Π½Π½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡΡ, ΡΡΠΎ ΠΠ, ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΎΡΡΠ°ΡΠΊΠ°ΠΌΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ Π°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠΈΡΠ»ΠΎΡ, ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π΄Π»Ρ ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π²ΡΡΠ²ΠΎΠ±ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² Π² ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ΅
Comparative analysis of the physicochemical characteristics of SiO2 aerogels prepared by drying under subcritical and supercritical conditions
SiO2-based aerogels have been produced be removing a solvent (ethanol or hexafluoroisopropanol) from lyogels both above and below the critical temperature of the alcohols (in the range 210β260 and 160β220Β°C, respectively). The resultant materials have been characterized by low-temperature nitrogen adsorption measurements, X-ray diffraction, thermal analysis, scanning electron microscopy, X-ray microanalysis, and small-angle and ultrasmall-angle neutron scattering. The results demonstrate that removing the solvent 20β30Β°C below the critical temperature of the solvent yields silica that is characterized by higher specific porosity and has the same or a larger specific surface area in comparison with the aerogels produced by drying under supercritical conditions. The nature of the solvent used and the solvent removal temperature influence the size and aggregation behavior of primary clusters and the cluster aggregate size in the aerogels