10 research outputs found

    Layered double hydroxide based active corrosion protective sealing of plasma electrolytic oxidation/sol-gel composite coating on AA2024

    Get PDF
    This work reports a novel approach for growing layered double hydroxide (LDH) films on any plasma electrolytic oxidation (PEO) coated AA2024 independently of the nature of the PEO coating. The specific PEO coating chosen to carry out this work is considered to be not suitable for direct LDH growth because of phase composition and morphological features. In this paper, we describe a new methodology that consists of covering the PEO coating with a thin layer of aluminum oxide based xerogel as the source of aluminate ions for subsequent in-situ LDH growth. X-ray diffraction (XRD) and scanning electron microscope (SEM) images showed a successful formation of LDHs on the surface. An improvement in terms of active corrosion protection was also demonstrated by electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET).publishe

    БвСрхвысокомолСкулярный полиэтилСн (Π‘Π’ΠœΠŸΠ­) ΠΊΠ°ΠΊ основа ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ матрикса для создания 3D ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹

    Get PDF
    The study is devoted to the development of an artificial material based on the ultrahigh-molecular weight polyethylene (UHMWPE) with a porous or cellular 3D structure as a cellular matrix – a framework for growing cell cultures. The development of such matrix provides support for neuronal cell culture under conditions that mimick those that exist in the living body. Typically, in vitro cellular studies are conducted in a 2D format, which limits intercellular interactions, morphology, differentiation, survival, signaling responses, gene expression and proliferation that are found in vivo. Here, we propose to use UHMWPE as a material of the cellular matrix, the ultra-high molecular weight polyethylene. UHMWP is a bioinert substance, wich allows forming a system of open connected pores needed to provide cellular life conditions with supply of nutrients and oxygen as well as the removal of waste products, the possibility of intercellular communication, etc. As a result, the use of UHMWPE as a cellular matrix will allow to study the processes occurring in cells in the 3D environment.Π Π°Π±ΠΎΡ‚Π° посвящСна Π°Π½Π°Π»ΠΈΠ·Ρƒ свойств искусствСнного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π½Π° основС свСрхвысокомолСкулярного полиэтилСна (Π‘Π’ΠœΠŸΠ­) с пористой ΠΈΠ»ΠΈ ячСистой 3D-структурой, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π² качСствС ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ матрикса – каркаса для выращивания ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Ρ‚Π°ΠΊΠΎΠ³ΠΎ каркаса обСспСчиваСт ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ Π² условиях, ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½Ρ‹Ρ… ΠΊ Ρ‚Π΅ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Π² ΠΆΠΈΠ²ΠΎΠΌ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ΅. Как ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ исслСдования in vitro проводят Π² 2D-Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Π΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΠΎ своСй ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π΅ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ взаимодСйствия, ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡŽ, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΡƒ, Π²Ρ‹ΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡ‚ΡŒ, ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹, ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ Π³Π΅Π½ΠΎΠ² ΠΈ ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΡŽ, Π½Π°Π±Π»ΡŽΠ΄Π°Π΅ΠΌΡ‹Π΅ in vivo. Π’ качСствС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ матрикса прСдлагаСтся ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π±ΠΈΠΎΠΈΠ½Π΅Ρ€Ρ‚Π½Ρ‹ΠΉ свСрхвысокомолСкулярный полиэтилСн (Π‘Π’ΠœΠŸΠ­), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ позволяСт ΡΡ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ систСму ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Ρ… связанных ΠΏΠΎΡ€ с Ρ†Π΅Π»ΡŒΡŽ обСспСчСния ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠΈΠ·Π½Π΅Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ – β€œΠΏΠΎΠ΄Π²ΠΎΠ΄β€ питания ΠΈ кислорода, ΡƒΠ΄Π°Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² ΠΆΠΈΠ·Π½Π΅Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ осущСствлСния ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… связСй ΠΈ Ρ‚.Π΄. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ использованиС Π‘Π’ΠœΠŸΠ­ Π² качСствС ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ матрикса ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ процСссы, ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π² условиях 3D-срСды

    АэрогСли Π½Π° основС SiOβ‚‚, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΊΠΎΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎ связанными ароматичСскими кислотами, ΠΊΠ°ΠΊ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ систСмы доставки лСкарствСнных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ²

    Full text link
    Hybrid aerogels (AGs) containing NH2-group were acylated by benzoic and salicylic acids. The acylated AGs had the specific area value of 170-220m2/g and were not deacylated in H2O-iPrOH mixture at 37Β°Π‘ during 24h. In 0.5% HCl at 37Β°Π‘ hydrolysis takes place releasing free acids and giving the possibility to use aminoaerogels as drug delivery system.Π“ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Π΅ аэрогСли (АГ), ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ согСлированиСм тСтрамСтоксисилана (ВМОБ) ΠΈ 3-аминопропилтримСтоксисилана (АПВМБ) Π² мольном ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ВМОБ:АПВМБ=4:1, Π±Ρ‹Π»ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΏΡƒΡ‚Ρ‘ΠΌ ацилирования Π°ΠΌΠΈΠ½ΠΎΠ³Ρ€ΡƒΠΏΠΏΡ‹ остатками Π±Π΅Π½Π·ΠΎΠΉΠ½ΠΎΠΉ ΠΈ салициловой кислот. УдСльная ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхности ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² составила 170-220 ΠΌ2/Π³. Показано, Ρ‡Ρ‚ΠΎ Π²Ρ‹Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π½ΠΈΠ΅ АГ Π² Π²ΠΎΠ΄Π½ΠΎ-ΠΈΠ·ΠΎΠΏΡ€ΠΎΠΏΠ°Π½ΠΎΠ»ΡŒΠ½ΠΎΠΌ растворС ΠΏΡ€ΠΈ 37Β°Π‘ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 24 Ρ‡ Π½Π΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ Π²Ρ‹ΡΠ²ΠΎΠ±ΠΎΠΆΠ΄Π΅Π½ΠΈΡŽ свободных кислот Π² раствор, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π² 0.5% HCl ΠΏΡ€ΠΈ 37Β°Π‘ происходил Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ· Π°ΠΌΠΈΠ΄Π½ΠΎΠΉ связи с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ свободных кислот. Π”Π°Π½Π½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ позволяСт ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ АГ, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ остатками биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… органичСских кислот, ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ³ΠΎ высвобоТдСния лСкарствСнных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Π² ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ΅

    Comparative analysis of the physicochemical characteristics of SiO2 aerogels prepared by drying under subcritical and supercritical conditions

    Full text link
    SiO2-based aerogels have been produced be removing a solvent (ethanol or hexafluoroisopropanol) from lyogels both above and below the critical temperature of the alcohols (in the range 210–260 and 160–220Β°C, respectively). The resultant materials have been characterized by low-temperature nitrogen adsorption measurements, X-ray diffraction, thermal analysis, scanning electron microscopy, X-ray microanalysis, and small-angle and ultrasmall-angle neutron scattering. The results demonstrate that removing the solvent 20–30Β°C below the critical temperature of the solvent yields silica that is characterized by higher specific porosity and has the same or a larger specific surface area in comparison with the aerogels produced by drying under supercritical conditions. The nature of the solvent used and the solvent removal temperature influence the size and aggregation behavior of primary clusters and the cluster aggregate size in the aerogels

    Digital Halftoning Algorithms for Medical Imaging

    Full text link
    corecore